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A mathematical model is developed with which the total effort of the student 
can be minimized (thus the learning process optimized) for the following situation. 
The student must pass an examination or mastery test, but is allowed to do this 
again and again, with a fixed time between tests. He can estimate his true score by 
means of a preliminary examination; thus he is able to study until an optimal level 
is reached; that means, the expectation of his total effort is minimal, if the 
probability of failure is taken into account. It is assumed that true score is a 
normal-ogive - or logistic - function of ability. Forgetting is seen as a uniform 
velocity towards the left on the ability dimension. If 'engagement' is constant there 
is a uniform movement to the right. The velocity depends very simply on three 
personal parameters: 'engagement', 'capacity to learn the subject' and 'memory and 
on three subject matter parameters: 'length', 'difficulty,' and 'isolatedness'. It is 
shown hom, the parameters can be estimated empirically. A formula is developed 
with which the expectation of total effort is expressed as a function of these six 
parameters, true score, and probability of success. This probability is expressed as 
a function of true score, number of items, and cutting score. With this formula the 
optimal true score can be iteratively estimated. It is necessary to know this best 
tactic of the student before the learning and evaluation process can be made 
optimal.

1. Introduction

The model (or theory) which will be developed here concerns mainly 
educational situations in which well-defined examinations must be taken. 
The examination consists of a sample from a domain of items, of which the 
student must answer correctly a predetermined percentage, also known to 
him. By means of preliminary examinations and the publication of sets of 
items from the same domain the student is able to estimate his score, thus to 
what extent he is ready for the examination. If one is satisfied with norm 
referenced tests (relative norms) the optimal methods of Cronbach & Gleser 
(1965), and others, may be used. The situation with criterion referenced tests 
is different; here mathematical models for optimal use of tests are wanting or 
rudimentary (Carroll, in: Block 197 1).
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A mathematical model would he relatively simple if preliminary 
examination and examination itself would be totally reliable. In this 
imaginary case the student could manage to succeed with every 
examination. One has to take into account that some students learn or forget 
faster than others, and that some books or courses are more difficult or more 
incoherent than others. A simple model for these problems will be developed 
in sections 2-9. In reality the student has, moreover, a risk of fail. We suppose 
that the student is allowed to take the examination again and again: there is 
no selection, only placement. This means that the student studies at his own 
rate. (This does not exclude group instruction, of course.) This situation is 
realized in continental universities. (There are some voices heard, which 
want to alter this situation in a more schoolish direction. On the other hand, 
in Anglo-Saxon countries, where the schoolish system dominates, there are 
people who propagate studying at an individual rate; especially supporters 
of programmed instruction and computer assisted instruction advocate an 
individual rate, but not only these.)

2. Learning curves and forgetting curves

The assumption of these curves is essential for the present theory. The 
learning curve gives the true score of the student on the item domain as a 
function of time, and the forgetting curve gives this true score in the time, 
after the examination, in which the student does not study.

There has been much laboratory research done on learning curves. One of 
the models used, for example, is the 'all or none' model. It is assumed that the 
student reads the subject matter which consists of items to be learned, say, n 
times. Each item has each time a probability c to be picked tip from memory. 
Once it is in memory it stays there (until the examination). With these 
assumptions the probability of the item being picked tip after n readings can 
be estimated and this is (practically) also the mean number of items the 
student knows after n readings, this means his relative score. This learning 
curve turns its concave side to the time-axis. The forgetting curve turns its 
convex side to this axis. The assumption here is that every item in memory 
has a probability c' to disappear. Learning and forgetting curves are both 
exponential functions, and each other's reflected image. With these curves 
some calculations for the optimal use of criterion referenced tests were given 
in e.g. Van Naerssen 1971.
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Though impressive learning curve research has been done in the 
laboratory, this cannot be said about learning and forgetting in the 
educational setting. This research is just starting, and is as yet in the phase of 
testing hypotheses, not of describing curves. The convex and concave 
curves of the laboratory cannot be generalized into the educational 
situation. A weak point of the exponential curves, for example, is that the 
phenomenon of over-learning is not described. If a subject matter is learned 
over and over again, forgetting decreases. In the all-or-none model it makes 
little difference for remembering, if the subject matter is learned until 98% or 
until 99% is known, though learning until 99%, costs much more time.

Here a presumably better model is used, adopted from score theory. The 
true score is a (normal) ogive function of the 'underlying ability'. This 'test 
characteristic curve' is the sum of the 'item characteristic curves', that 
describe the probability of answering the item correctly as a function of the 
ability.

During the study phase the student moves on the ability dimension from 
left to right. This dimension is just what the examination measures. If the 
student ceases to study he moves to the left on the ability dimension.

Because exact empirical material is lacking, the simplest assumptions are 
made, namely that the student is moving with a uniform velocity, to the right 
or to the left. This means that learning curve and forgetting curve both are 
supposed to he ogives, though the former is (much) steeper. The difference 
with the exponential function concerns the beginning of the curve. One 
could imagine that, first, an orientation is needed during which the score on 
the test hardly increases. In the phase of forgetting there is at first a period in 
which the knowledge is still coherent. As this coherence decreases the 
knowledge falls faster into decay, until the decrement of the true score has to 
slow down, just as in the forgetting curves of the laboratory. The more the 
student (over)learns the subject matter, the more to the right he comes on the 
ability dimension and the longer it lasts before he has forgotten all. This is 
contrary to the situation in the other model, of the continually concave 
learning curve and the continually convex forgetting curve.

Forgetting goes on also during learning. It is af [sic] if the student is in a 
row boat on a river -- the Lethe -- of which the water flows slowly to the left. 
Without effort he floats on the stream towards ignorance, but during study he 
rows against the stream. The larger his effort or concen-
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tration the stronger his muscles (capacity to learn) and the lighter the boat 
(subject matter), the faster he reaches his object - a successful examination. 
And, of course, the stream can be fast or slow.

3. The formula for learning and forgetting

In accordance with the rule that one has to begin with the assumption of the 
simplest relations, it is postulated that the velocity of the student with 
respect to the stream -- thus the ability increment per unit of time equals the 
product or quotient of four magnitudes:

(1) the enGagement G, the measure in which the student concentrates on 
the subject matter;

(2) the Capacity C to learn the specific subject matter;
(3) the Length L of the subject matter, and
(4) the Difficulty D of this subject matter. The velocity of forgetting is 

simply the quotient of a subject matter parameter and a personal parameter:
(1) the Isolatedness I, the measure ill which the subject matter is 

incoherent and not integrated in a larger part of knowledge, and
(2) the Memory M, the measure in which the student is able to remember 

what he has learned.
Of course, one could speak about the coherence of the subject matter and 

the forgetfulness of the person, but for clarity the direction of the six 'factors' 
is chosen in such a way that the larger the three personal parameters - G, C 
and M - and the smaller the subject matter parameters L, D and I, the faster 
the subject matter is learned.

The change of the ability is written as ∆ A, and time as W (from 'Weeks' 
and not as T from 'Time', because T is reserved for 'True score'). The formula 
for the ability increment per time, or the total 'Velocity' thus becomes:

        (1)

The handiest unit of time in an examination theory is probably the
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week. Months are not of' equal length, tile year is  much too long. On the 
other side, the day is too short; here it is not considered that tile student does 
not study for one or two days of the week.

As for the ability, this magnitude is measured on an interval of which the 
values go from minus infinity to plus infinity. As is usual in test theory, it is 
assumed that true score is such an ogive shaped function of the ability that, 
as ability increases from minus infinity to plus infinity, true score increases 
from a basic value T0 until the maximum value 1. Thus, true scores are 
expressed in relative units, which means that they are divided by the number 
of items k.

For later calculations it appears better to introduce a 'corrected' true score 
Tc, a linear function of T, but having extreme values 0 and 1:

               (2)

One could imagine Tc as the proportion of items 'known', and assume that 
T0 = 1/a, in which a is the number of alternatives of the test items. But the 
use of a basic value T0 in the formulae is more flexible than' the use of the 
number of alternatives. In reality TO may deviate from 1/a; usually T0 is 
larger. Thus it may be better to estimate T0 empirically, for instance by 
administering the test to a group which has not yet begun to study the 
subject matter.

A normal ogive can be assumed between Tc and A. But it has some 
mathematical advantages to replace the normal ogive by the logistic curve, 
which cannot be distinguished from it by the eye (Lord & Novick 1968: ch. 
17). The relations between Tc and A, and in connection with (2) between T 
and A are:

   (3)
and

    (4)

The number 1.7 may be deleted, but usually it is added to conform the 
logistic curve to the standard normal-ogive one. With 1.7 the unit of
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ability is easier to interpret. Just as between p = 0.5 and about p = 0.84 of the 
standard normal ogive one standard deviation exists, one can say that the 
ability is increased by one unit (a standard deviation) if the corrected true 
score is increased from 50% to 84% (or from 16% to 50%, etc. ).

On an interval scale, the zero point can be chosen arbitrarily. Here the 
ability is zero when Tc is 0.5.

The true score T must be estimated from observed scores Y (see appendix). 
The 'velocity' of learning or forgetting is expressed as 'standard deviations 
per week'. (Another method to get an easily interpretable ability increment, 
is to delete 1.7 in (4) but replace ln by 21og; this method is not used in the 
following sections).

5. Latent ability

When students have to take an earlier administered test unexpectedly, they 
earn (very) low scores. But this does not mean that little knowledge 
remained. They know the subject matter again perhaps after one rereading of 
the book. One has to postulate a latent knowledge behind the measured 
manifest knowledge. The manifest knowledge soon becomes very small, and, 
moreover, unreliable to measure. Latent knowledge may be more interesting; 
it expresses what 'really' remained of the once-learned subject, after 
reactivation. It is assumed in the model that the latent ability decreases 
linearly with time in the forgetting phase and increases linearly in the 
learning phase (if engagement is constant). The manifest ability may be a 
more or less capricious function of time.

A consequence of this assumption is that the ability can be measured only 
at the beginning of learning, and on the 'tops' of the curve, i.e. during. the 
examinations. It will be shown how the parameters of the model may be 
estimated with these assumptions.

6. Estimation of personal parameters

The units of four of the six parameters can be chosen arbitrarily. It appears to 
be easiest to choose the units of the three subject matter parameters and the 
unit of engagement. E.g. one chooses a 'typical' examination. The length 
(number of pages), the difficulty and the iso-
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latednesss of this chosen subject matter define the units of length, difficulty 
and isolatedness.

As for the engagement, this can be expressed as a proportion of the 
customary maximal engagement of students in a week. E.g. 40 hours of 
intensive study per week defines an engagement of 100%. This engagementt 
is halved when the student divides his effort equally between two 
examinations, or his working time equally between examination and 
recreation. Of course, it also decreases when time is not optimally used. If 
one wants to use the model in short learning experiments, then one must take 
into account that the engagement may be 420% for some hours (a week has 
not 40 hours but 168).

In principle, the engagement score has to he obtained from the student, 
though a time-scheme and observations may be of some use. It must be clear 
from (1) that the larger the given engagement, the smaller the calculated 
capacity. The engagement as a separate factor is important when the effort is 
divided between several subjects (section 9).

Taking into account that the ability can only be measured in the 
beginning and at the 'tops' (during examinations), one can measure capacity 
and memory as follows by means of the defining subject matter: let the 
variables during the first study period be marked by the index 1, during the 
second, forgetting phase (after the failure of the examination) by index 2 and 
those of the second study period by index 3. Odd indices indicate study 
phases, even indices forgetting phases. Let A0 be the ability at the 
beginning, A1 the ability after the first (learning) period, etc. Then it follows 
from (1) and the fact that L = D = I = 1:

    (5)

    (6)

These are two equations with the unknowns, C and M: linear equations if 
1/M is regarded as the unknown. A0,  A1, and A3 can be estimated from 
scores; W1, W2,  and W3 can be measured or asked, just as the proportions G1  
and G3.  Thus, C and M of every student can be calculated.

In the past, intelligence was defined as the capacity to learn, but it will be 
clear that capacity and memory in this model are operationally
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defined variables, which have nothing to do with the problem of nature and 
nurture. In any case, C and M will increase with relevant education and later 
on decrease with age. The learning velocity of a student of statistics and the 
case with which he remembers formulae obviously increases with his former 
mathematical education. C and M are not constant, but they may be used as 
constants within the short time for which the model is designed: between 
beginning with the subject and passing the examination.

7. Estimation of subject matter parameters

When the values of the personal parameters are known, the parameters of 
other subject matters - not of the defining one - can be estimated. As for the 
length L, this parameter can easily be estimated in proportion to the defining 
subject matter; one may use the number of pages, of lessons, of formulae, 
etc., but, of course, once chosen a method must be maintained. The length L 
is the subject matter parameter which is the analogue of the personal 
parameter G. Likewise, the difficulty D is the analogue of capacity C and the 
isolatedness  I the analogue of the memory M.

When the same student learns another subject matter, one can write down 
two equations with two unknowns again, comparable to (5) and (6), but now 
with the unknowns D and I, and known constants C and M.

Obviously, the same values of D and I must be found with another student. 
This is the first test of the model. Of course, it will be impossible to find 
exactly the same values with each student, but if these values vary too much 
the model must be adapted, i.e. made more complicated.

When L's, D's and I's of different subjects (examinations) are calculated, 
then. of course, these must produce the same personal parameters of the same 
students. This is the next test of the model.

Difficulty and isolatedness, too, are defined in terms of the velocity of 
learning and forgetting. The difficulty of a subject matter is in principie 
nothing more than the number of weeks it takes a certain person to learn a 
certain number of pages up to a certain level (proportion score), if forgetting 
during learning may be neglected. The isolatedness is nothing more than the 
velocity with which the subject matter is forgotten. It may be large when 
nonsense syllables must be learned, and small if tile subject matter is 
embedded in well-integrated knowledge.
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The subject matter parameters are changing slowly in time. The course 
may be shortened or lengthened, but it is also possible to decrease D by 
publishing a syllabus, or by introducing working groups. The isolatedness 
may be decreased by showing relations between new concepts and old ones, 
by introducing open-book-examinations, etc. It is only assumed that L, D 
and I may be considered constant within a few months and without 
modification of the course.

It has been shown how, in principle, the six parameters may be estimated. 
Reality may be more complicated. Not exactly the same values of the 
personal parameters will be found, if one uses different subject matters, and 
not exactly the same values of subject parameters if one uses different 
students; one has to calculate means, minimal mean squares, etc. Here it was 
only the purpose to show that the theory can be tested empirically, and how 
this can be done in principle. In section, 9 the model will be tested 
otherwise.

Each theory or model is a simplification. One simplification here is that 
the subject matter is regarded as homogeneous. In reality one could speak 
about learning items, which each have their own learning curve and 
forgetting curve, analogous to the item characteristic curves of score theory. 
If the item  characteristics are normal ogives, for example, then the test 
characteristic curve is only approximately normal. The probability of a right 
answer to some learning items will soon be decreased to the basic value, 
other items are remembered a whole life span, etc. Nevertheless: the model 
may be useful within the short interval between beginning a course and 
passing the test.

8. Extent of subject matter and total effort

Often it will be unnecessary to distinguish between length and difficulty. In 
these cases their product may be indicated by the word 'extent' and the letter 
X.

A second complex  concept is very important in this model: the (total) 
effort F. When engagement is constant this effort is the product of 
engagement and time. More generally:

(7)
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The concept 'effort' is central in this model, because it is assumed that if 
the educational process be optimal, both student and teacher (staff') have to 
minimize the total effort (of the students, given the extent of the subject 
matter and the required level of competence).

Roughly speaking the effort F is proportional to the extent X of the 
subject matter, but this is only true insofar as the term 1/M may he ignored. 
When 1/M approaches GC/LD (see formula 1) the effort becomes infinite.

9. Testing the model: split of subject matter

Sometimes one hears about student actions in favour of splitting large 
examinations. They do not protest against the extent X of the subject matter, 
nor against the demanded level T (proportion of items which must be 
answered correctly) but require that the subject matter be spread over more -- 
say j equivalent - parts, which may be learned and passed in succession. 
Apparently the total effort is decreased. Does the model also lead to the same 
conclusion?

By resolving W in (1) and, multiplying this by (the constant) G, one gets a 
formula for the total effort F:

     (8)
  
After the subject matter is divided into j equivalent parts,  ∆ A remains the 
same  (because T is constant), and C, I, M, and G do not change either. The 
effort needed for each part is given by (8) on the understanding that X must 
be divided by j. The total effort is j times as large; thus, the total effort TP 
after division into j parts, becomes:

    (9)

If (8) and (9) are compared, it is seen that, indeed, F is decreased. The 
intluence of the division is largest when the second term in the denominator 
is a relatively large part of the first term; thus, if capacity, memory and 
engagement are relatively small and the extent and the isolated-
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ness  of the subject matter are large. In these cases students should strive 
towards division, in accordance with common sense.

It is also clear that without division a subject may be so heavy (X and I 
large) that a weak student needs an infinitely long time to pass the 
examination. Thus, in this model it is not assumed that 'everybody can pass 
every examination if lie gets time enough'. If the extent X of the subject 
matter is increased the weak students will fail first, but at last every student 
can be made to fail, because forgetting goes on as fast as learning and 
mastery is never approached.

By making the extent large enough every examination can be made 
selective; that means that only students with high capacity and memory will 
pass. On the other hand every weak student can be made to pass a difficult 
subject matter, provided that one tests in small parts. This strategy, of course, 
has also an obvious disadvantage: the subject matter may be wholly 
forgotten by the time the student graduates, while usually the objective is 
that the students dispose of the knowledge especially after that day.

10. Cutting score and probability of success

Now the examination Y with its fallible score Y enters into the picture. Only 
criterion referenced tests are considered, with a cutting score Ys which is laid 
down beforehand, and known to the student. Scores Ys or higher are 
considered 'mastery' or 'satisfactory'. If the student fails he is not removed, 
but he gets the opportunity, after some time, to take the test again and again 
(otherwise one could speak about selection).

The probability of success can be expressed as a function of three 
variables: cutting score Y, number of items k of the test, and true score T (see 
section 4). Y, and k must be manipulated by the staff if they want to optimize 
the educational process. The true score T to be aimed at is chosen by the 
student by means of preliminary tests or published sets of items. The chosen 
T is the 'strategy' of the studen t.

The binomial model (Lord & Novick 1968: ch. 23) will be used to express 
the probability p, of a student with true score T. It is assumed that the test 
items have (nearly) equal probability of success. The probability of a 
successful examination is the sum of the probabilities of having scores at 
least as large as Ys :
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   (10)
(An alternative which appears less realistic is the model of knowing or 

blind guessing (Lord & Novick 1968: ch. 14). If one wants to apply this 
model the probability of success can be calculated as follows: it is assumed 
that T0 = 1/a and that the student knows Tck items and answers them 
correctly; he guesses blindly at the other C items: k' = ( 1-Tc)k. Each time the 
probability of success is l/a. If he knows at least as much as the cutting score 
he succeeds with certainty:

If Tok ≥ Ys then ps = 1 

If Tck ≤ Ys then ps =   (11)

Thus the model of knowing or blind guessing.)

11. Minimizing the total effort

If norm-referenced tests are used the result may come as a surprise to the 
student, because he cannot know how hard the other students have learned 
and tried; the cutting score depends on their effort. This means that if norm-
referenced tests are used, the student cannot design an optimal strategy, he is 
only able to guess to what extent he has to study the subject. But if the 
student cannot choose an optimal strategy, neither is the staff able to design 
an optimal educational system. All measures are mere guesses. If, on the 
other hand the cutting score is established in advance, and the student is 
able to estimate his true score, then he can choose an optimal level of 
knowledge Aopt with which the expectation of his total effort E(F) is 
minimal.

The higher his chosen level A, the larger the effort necessary to reach this 
level, but the smaller his probability of failure. If he fails, his ability 
decreases. More effort is needed to reach the optimal level again. If his 
chosen level is too low he fails too many times. There must be somewhere an 
optimal level Aopt and, of course (formula 4) an optimal true score Topt. If the 
student chooses the optimal true score Topt he nevertheless may fail. The 
second time he has to reach the same optimal level, because every time the 
situation is the same; every time he has the same probability to succeed, etc.
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The expectation of the total (optimal) effort E(F) may be divided into 
three parts: the effort F0 needed to increase Fc from some value above F0  -  
due to earlier education  -  to the value 0.5; an effort F1 needed to bring Fc to 
the optimal value Topt, and the expectation of the effort F2. F2 is the effort 
needed to reach the optimal level again (after failure). If the probability of 
failure is called qs (= 1-ps) the expectation of F2 is

  (12)

The effort F2, needed to bring the ability level back to the same value is 
independent of study methods in this model; the student may do other 
things first and postpone the work, or he may study every day for some time. 
This can be proved as follows. If the level returns to the same value, then, 
with summation over time periods,

  (13)

Because ∑Wi = W, the number of weeks between successive tests:

  (14)

The effort needed to keep the ability (knowledge) on a constant level 
appears to be proportional to the time between successive examinations, and 
to extent and isolatedness of the subject matter; it is inversely proportional 
to capacity and memory.

Thus, for a certain person in a certain test situation F2 is constant and can 
be estimated by (14). The expectation of total effort can be expressed as a 
function of the optimal true score Topt. The second term follows from (4) and 
(8):

     (15)

In this equation ps can be calculated with (10), in which T is  replaced
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by Topt, from Topt, the number of items k, and the cuttingscore Ys.
However, the real unknown is just Topt.  This value can be approximated 

iteratively as that value between T0, and 1, with which one gets the lowest 
value of E(F) (this expectation must be minimized). The constant F0 is of no 
interest when Topt is calculated.

When Topt is known, the optimal strategy of the student is known. If this is 
explained to the student, it may be expected that this strategy is followed. 
Then the probability of success p, is known, likewise the expectation of the 
total effort E(F). By means of computer simulations variables can be 
manipulated such as the time W between examinations, the number of items 
k, the cutting score Y, the number of tests in which the subject matter must be 
divided; several methods of combining scores can be tested (compensatory 
vs conjunctive, etc.). In short: an optimal system of examinations can be 
designed.

Applications of the model, in the form of simulations, will be postponed 
till a following paper.

Appendix: True score estimated by the student

So far, it was tacitly assumed that the student knows his true score by means 
of preliminary examinations or published sets of items. In this way he is able 
to study until his optimal true score is reached. However, in reality he can 
only estimate his true score. How does this fact influence the model?

One has to distinguish between systematic and random errors. The 
observed score on the preliminary test may deviate systematically from the 
true score. One well-known method is to estimate the true deviation score as 
the observed deviation score times the reliability of the (preliminary) test. 
Other methods may be used. But, if it can be assumed that every student 
follows the optimal tactic, score variance is zero and the estimated true score 
is just the observed score of the preliminary test.

The random errors are much more important in the model. They can be 
handled as follows. Let k1 be the number of the preliminary items - a random 
sample of the same domain as the examination, which consists of k2 items. 
The error variance of the examination, given a true score T, is T(1-T)/k2 
according to the binomial model. But this same model can be applied to the 
preliminary test. Here the true score is also 
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approximately T, and thus, the error variance is T(1-T)/k1. Errors of' first and 
second test are uncorrelated,  thus

total error variance =

    (16)

But this means that the formulae of the model can he used unchanged, 
provided that not the real number k2 of the items of the examination is used 
in the formulae, but a reduced number k so that 1/k is the sum of 1/k1 and 1/
k2. It follows that

 (17)

The shorter the preliminary test, the more the number of items of the 
examination must be reduced in the formulae. It turns out that the length of 
the preliminary test, with which the student estimates his true score, is just as 
important as the length of the examination itself.
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