
Vier manuscripten, die allemaal iets met 
herziening van 1980 Passing scores 
APM te maken hebben.  Ik heb ze ieder 
een eigen kleurtje gegeven.  T.z.t doe 
ik nog eens een poging het allemaal in 
elkaar te weven en te actualiseren met 
latere inzichten. Of is dat misschien 
net zo verstandig?  Voor mijn SPA-
model was ik nog niet oz heel lang 
geleden begonnen om nutsfuncties 
uitvoerig te behandelen, het is beter 
om daarmee door te gaan, lijkt me.  
Dan is alles wat hironder volgt, alleen 
om te bewaren voor misschien ooit? 

==========================================
=============

[Dit is een poging om 'Passing scores' te 
herzien, de tekst is scherper, de formules 
eenvoudiger, de figuren beter. Maar ik heb 
destijds deze poging niet afgemaakt. De 
tekst is van belang omdat het nog eens de 
puntjes op de i zet, het geeft mijn 
vorderingen in 1980 denk ik goed weer. 



Voor annotaties zie de file van het rapport 
'Passing scores.' Het is 2022, en ik probeer 
van de OCR-file een op mijn website 
publiceerbaar bestand te maken. In rood 
geef ik op enkele plaatsen aan wat me niet 
bevalt of wat  misschien beter anders kan. 
Ook breng ik nogal wt tekstuele en notatie-
wijzigingen aan in de originele tekst die uit 
1980 stamt.  Het werk is nog niet af, zeg 
maar. Mogelijk ga ik nog afscheid nemen 
van het Engels, een begin van een 
Nederlandse tekst is overigens al eens 
gemaakt, en ook hieronder te vinden. ]   

 
fi l e ( O C R v a n m a n u s c r i p t ) 

80_aantekeningen_utiliteit_etc.rtf  

The most promising approach to standard 
setting is the decision theoretic one (Glass 
1978). However, the way this approach has 
been implemented until now has suffered 
from too heavy accentuation of the 
mathematics involved (Huynh 1976, 1977, 
Van der Linden 1980), with the exception of 
a rather unknown study by Davis, Hickman, 



and Novick (1973). The latter authors used 
t h e e x t e n d e d f o r m a n a l y s i s , a 
mathematically equivalent but significantly 
less complicated competitor to the normal 
form analysis that has been used by the 
former authors and that is the usual form of 
analysis in statistical decision theory 
(Ferguson 1967, De Groot 1970). On the 
distinction of extensive form and normal 
form analysis see also Raiffa and Schlaifer 
(1971), Davis, Hickman, and Novick 1973. 
Extensive form analysis, the technique I 
will use in this paper, is the predominant 
form in (managerial) decision theory (e.g. 
Schlaifer 1959). Raiffa and Schlaifer (1971 
p. ??) showed that both approaches lead to 
the same optimal decision.

Optimal decision making, and for that matter 
also optimal standard setting, refers itself 
to relevant criteria, usually called 'states of 
nature', about which the decision maker 
has some information but by no means 
perfect information. Usually there is one 
particular state of nature involved, e.g. in 
medical diagnostics, and that state of 
nature will determine the outcome of the 



action taken. All you need at this point of 
the analysis is a probability model on the 
state of nature, connecting it to the 
information available. Now, that is a good 
way to approach the diagnostic problem, 
but is it also a good way to approach the 
special problem that the setting of a 
standard or cutting score on a criterion 
referenced test poses?

The very first thing to do when you are 
planning on a decision analysis, is to 
analyze your problem. Any omissions 
made here will lead to less than optimal 
results further on. Now, when analyzing the 
standard setting problem in educational 
assessments you will discover that there is 
no direct analogy to the medical diagnosis 
model, making it bad procedure to further 
follow the standard decision theoretic 
approach as it surely is applicable in the 
medical model. The problem in criterion 
referenced testing is that one of the two 
'treatments' is ill defined. It is usually 
stipulated that 'rejected' testees will receive 
remediation, be tested again, if again their 
score is not up to the standard they receive 



remediation, etc. This is a muddy state of 
affairs, and has to be properly reformulated 
for any kind of mathematical modeling to 
be applicable. Depending on the particular 
situation you may define the situation as an 
infinite series, as Van Naerssen (1976) and 
Wilbrink (1978) did. Another possibility is to 
follow the validation study approach; to 
always send the students on to the next 
instructional unit after remediation, or if you 
like after the retesting, like Barkmeier, 
Duncan, and Johnston (1978). Needless to 
say: you not only define it this way, but you 
also have to act accordingly.

Another most important fact that has been 
overlooked in decision theoretic work on 
this standard setting problem is the role of 
the state of nature variabele of interest 
here: either the underlying true score 
(domain score) or the external criterion of 
further success (on the next unit). It has not 
been recognized that these criteria are no 
'steady' state variables, but are influenced 
by the remediation treatment. That is even 
the goal of that treatment: to meliorate 
mastery or success. So you will need a 



double probabilistic model in the complete 
analysis, one model for each of the 
treatments or decisions.

In the decision theoretic approach you 
specify utilities or utility functions on the 
outcome variables of interest. It has not 
been realized that in both treatments the 
variable of interest is the same: level of 
mastery (if you choose an internal criterion) 
or success in the next unit (if you choose 
an external criteri on), and so also the 
utility function on that variable. Of 
course you specify at least one other 
criterion variable: the costs of remediation 
and retesting.

Of course, you specify at least one other 
criterion variable: the costs of remediation 
and retesting. You've got to combine this 
negative utility with the utility function on 
the main criterion. I will show in the 
following that this preliminary analysis of 
the standard setting problem situation 
makes poss ib le a c lear cu t u t i l i t y 
assignment, thereby strengthening what 
has by many practitioners been perceived 



as the Achilles heel of this application of 
decision theory.

In the process of specifying your utilities you 
will implicitly also determine the cutting 
point on the true score dimension. You 
may, of course, independently specify this 
cutting point, and your utilities. Of necessity 
both results must be in agreement with 
each other, otherwise the system will be 
undefined: you would have to choose 
either your utility functions or your cutting 
point as point of departure for further 
analysis. The wise man or woman will 
update his or her ideas on this cutting point 
on the basis of his utility specifications. In 
particular this means that Glass (1978) is 
mistaken in his criticism that decision 
theory would need a (all too subjectively 
chosen) cutting point on the true score 
dimension, and that Van der Linden (1980) 
is mistakingiy believing that cutting point is 
needed in the decision theoretic approach 
he promotes. The one exception possibly is 
the th resho ld u t i l i t y case , where 
specification of four utilities as well as 
specification of the threshold or cutting 



score or mastery score is needed.

Linear utility: an opportunity to clarify 
some unattended to issues in standard 
setting.

[Misschien is het een idee om hier de notatie 
van Peterson & Novick 1976 te volgen? 
Laatste sectie.  O wacht, zij geven 
drempelnut als voorbeeld. Zie ook 
Cronbach, in het JEM-nummer er 
onmiddellijk op volgend.]

A domainreferenced test is used to either 
pass students on to the next instructural 
unit, or remediate them and send them 
after retesting on to the next instructional 
unit irrespective of their scores on the 
second test. This construction is chosen to 
define the decision situation. It is also a 
possibility to follow in actual practice, see 
Barkmeier, Duncan, and Johnston 1978. 
Another way to model the decision 
situation would be the rule that on the 
second test the same pass/remediate 
decision is to be made, and again on a 
third test, etcetera. This model is 



somewhat less tractable, but will give the 
same mathematical results as the model 
here suggested (because it is the expected 
cost of remediation, and the expected 
results of remediation, that are used in the 
development). explain, Ben.

The criterion of interest is the level of 
mastery of the student, or the proportion 
correct expected, should the student 
answer all questions in the domain.

It is assumed that every student gets an 
individual test, randomly sampled from the 
domain. In practice you may of course 
relax this assumption, and still use the 
results of this study, for it is not to be 
expected that group tests will differ greatly 
in their relevant results.

Because level of mastery is what the 
decision maker is interested in, the first 
thing to do is specify the decision maker's 
utility function on this dimension. This 
function will for the expository purposes of 
this paper be chosen to be linear. Let us 
choose the utility scale in the most 
convenient way: assign utility zero tot zero 



mastery, utility one to perfect mastery, or 
mastery one. Figure one depicts the result. 
In formula: 

um = m [1]

f(u) = π. [1]

π  being the proportional level of mastery; 
alternatively: think of π  as  the  parameter  in 
the binomal model for testscores. 
[in  het  origineel  heb  ik  u(m)=m,  maar  dat  is 
verwarrend  want  dat  gebruikt  m  in  twee 
verschillende  betekenissen.  Nu  is  m  gewoon 
mastery als doelvariabele,  en π de waarde van 
de  variabele.   Ik  zal  deze  verandering  dus 
overal in het vervolg moeten doorvoeren.  En 
waarom schreef ik het niet als f(u)?  Het is een 
functie,  tenslotte.   Toch  eens  in  de  literatuur 
kijken welke varianten in notatie er in omloop 
zijn



FIGURE 1. Utility function on level of 
mastery

If questions in the domain can be answered 
correctly by guessing the answer or the 
alternative, the same utility function may 
still be used. It is not necessary to evaluate 
the chance level of mastery on the utility 
scale as zero. Extending the linear function 
to levels below chance level need not 
bother you, because in applications 
students will always have an expected 
mastery not less than the chance level. 
The mastery dimension is in this way 
defined as including guessing. This 
definition will bring great benefit in the 
mathematical development of this model. Is 
this correct, Ben? Check.



Remarking that passing a student with a 
given test score entails the uti l i ty 
corresponding to his mastery level, and no 
other utilities or costs, you can specify the 
outcome or terminal  function for the 
decision alternative 'pass' given the 
observed test score X:

 up|m = m [2]

It is identical to the utility function on level of 
mastery (1), depicted in figure 1.  

You might object to this, feeling that a 
passed student having a low level of 
mastery will run the risk failing his next unit 
because of inadequate preparation. In 
effect you would be saying then: what I am 
interested in is future success, not the level 
of mastery. You may exchange the internal 
criterion, level of mastery, against an 
external one, let's say level of mastery on 
the end-of-next-unit test. In this paper I will 
stick to the internal criterion.



Now for the students going through 
remediation: here also the interest is in 
level of mastery reached after remediation. 
It is still the same mastery, defined on the 
same item domain, and the utility function 
on mastery is already specified as (1). 
Only, now there is a cost involved: the cost 
of remedial teaching, extra time spent bij 
the student, and the cost of retesting. For a 
start this cost can be assumed constant, 
given the observed testscore; you may 
think of it as an expected cost, if you wish. 
No other costs or utilities being involved, 
you can specify the outcome utility 
function for the decision alternative 
'remediate' given the observed test score x:

UrIx = m + c 
(3)

where c is the cost of remediation etc.
The cost c is to be evaluated on the already 

established utility scale, and you will 
specify it approximately as the cost of 
remedial teaching as a proportion of the 
cost the 'normal' teaching activities of this 



unit entail. To be specific, let's evaluate c 
as .25. Both outcome utility functions can 
now be pictured, see figure 2.  Die  keuze 
voor  .25  is  niet  helemaal  willekeurig, 
maar is natuurlijk wel onbevredigend.  Is 
er  geen  betere  procedure  om  tot  een 
schatting te  komen?  In  de  literatuur  te 
vinden?  De behandeling van de kosten 
als  een  constante  factor  is  een  eerste 
benadering,  waarschijnlijk  goed  genoeg 
om  als  steun  bij  het  beleid  te  kunnen 
dienen.  



FIGURE 2 Outcome utility functions for 
alternative decisions 'pass' and 'remediate', 
given test score x.  [De figuur komt uit het 
1980 rapport; in de revisie heb ik 
horizontaal: mastery, verticaal: utiliteit; 
laagste punt: -0,25; onderste functie: 
remediation; bovenste" pass.]

This picture is remarkable, in that there is no 
intersection of the outcome utility functions, 
not even an 'ordinal interaction'. You must 
realize that figure 2 involves only outcome 
utilities, the effect of remediation is not yet 
taken account of. The effect of remediation 
is, hopefully, a 'shift' of the probability 
distribution over mastery in upward 
direction. So what you need next is the 
probability model on each of the decision 
alternatives.
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Considering the decision alternative 'pass', 
let f(M I x) be the distribution of mastery 
conditional on testscore x. The quantity of 
interest is the expected utility when the 
decision 'pass' is taken. To obtain this E(u 



p ) for every level of mastery the product of 
its outcome utility and its probability is 
taken, and the results are summed. In this 
continuous case the integral from zero to 
one is taken of m.f(MIX),

the result of which is simply the expected 
value of f(m I X).

Assuming the regression to be linear you 
may use

E( u p )  =  E( m | x ) = rxx' x +  ( 1 - r xx' ) x ̅
(4)

where rxx'  is an appropriately chosen 
reliability coefficient for the use of this test 
in this situation. 

Except linear regression, no distributional 
assumptions are involved in (4). Are you 
prepared to use the betabinomial model, 
the result is (5), as shown in the next 
paragraph.

E(up ) = E( m | x ) = (a+x)/(a+b+n)
(5)



where a, b, and the number of testitems n 
are the parameters of the beta binomial 
distribution BeBi(a, b, n) fitted on the 
observed testscore distribution.
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Considering the decision alternative 
'remediate', let f(m'|y) be the distribution of 
mastery conditional on the testscore y on 
the test taken after remediation. However, 
the decision Iremediate' or 'pass' has to be 
taken conditional on testscore x, meaning 
that the regression of y on x, represented 
by g(y|x), is involved. The predicted level of 
mastery after remediation ml involves a 
double expectation, that can be simplified 
by taking the effect of remediation on level 
of mastery constant, given testscore x. You 
may think of this constant k as the 
expected gain in mastery, given testscore 
x.

Whether you work with k or with g(y|x), in 
order to implement the model in practice it 
will be necessary to carry out a validation 



study on an unselected cohort that is given 
remedial instruction. Alternatively it may be 
possible to substitue some subjective 
estimate for the estimate based on an 
empirical validation study, provided it can 
be shown in a sensitivity analysis that the 
range of notunreasonable subjective 
estimates do not influence the standard 
setting.

Assuming the effect of remedial teaching on 
mastery constant the result for the 
expected utility when the decision 
'remediate' is taken given de testscore x, 
and given the outcome utility function ( 3),:

E( ur )  =  E( m | x ) + k + c (6)

Transposing f(m|x) over a distance k to the 
right is equivalent to a vertical shift of the 
outcome utility function over the same 
distance, because of the direction 
coefficiënt 1. So, take the product of 
outcome utility (m+c+k) and probability f(m|
x) for every m, and integrate over m, the 
constants in (6) obtaining because the 
integral over a probability distribution 



equals 1. Of course:

E( ur )  =  E( m | x ) + k + c = rxx' x + ( 1  rxx' 
x ) x ̅+ k + c      (7)

or E( ur )  =  E( m | x ) + k + c = k + c + ( a 
+ x )/( a + b + n )    (8)

The result is only natural, as I will show 
here.

The decision rule is: select the alternative 
having the greater expected utility. 
Comparing (3) and (6) the rule stipulates: 
given testscore x, pass the student if c = k, 
in other words: pass the student if the 
expected cost of remediation is greater 
than the expected gain in mastery (or 
equal to it). You should realize that this 
simplicity is won by evaluating to it). the 
cost of remediation on the particular utility 
scale used.



mastery E(M|X) E(mr|X)

FIGURE 3. The probability distribution on 
mastery level before and after remediation, 
given test score

      

8 23580

Now you may take for every observed test 
score x the optimal decision. In that way 
you will surely stumble on the test score x 
where for the first time you decide to pass 



students having that score. Now this is 
your optimal standard, your best cutting 
score. Having a small test, stumbling will 
not be tedious to get at. However, it would 
be more elegant to be able to derive the 
optimal cutting score analytically.

The optimal cutting score has the unique 
characteristic that E(u P ) and E(U .) are 
equal (for the moment disregarding the 
discrete character of test scores). It is the 
score where you, the decision maker, are 
indifferent as to the available decision 
alternatives. Setting (3) en (6) equal the 
result is that the optimal cutting score is the 
score x i where

ki = ci (9)
obtains.

This result is quite significant, showing the 
direct relation between the costs of 
remediation, taken as proportional to the 
costs of the 'normal' instruction and testing 
of this instruction unit, and the expected 
gain in level of mastery, the gain taken as 
proportional to the entire range of mastery 



levels.

It is immediately clear that setting high 
standards carries the implication with it that 
the costs of remediation should be low.
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When is this linear utility function on mastery 
level realistic? Only in the case where 
ins t ruc t ion concerns on ly loose ly 
connected factual materials, and there is 
no interest in reaching at least some 
specified level of mastery regardless costs 
of instruction.

Using linear utility the standard on the test is 
set in response only to the special 
character of the learning curve for the 
instructional content concerned, and cost 
of extra activities in remediation and 
retesting, other instruction costs  implicitly 
being taken as linear in level of mastery 
'produced'. Latter remark may seem 
surprising, but is indeed compatible with 
the linear utility specification. When you are 
not satisfied with that particular state of 



affairs, you may of course specify a 
(negative) utility function on normal 
instructional costs, and combine it with the 
utility function on mastery level, using 
techniques specified in Keeney and Raiffa 
(1976); and on top of that you will need a 
(probability) model to connect cost and 
mastery. In this way you might come up 
with a more realistic model, but now you 
are facing also considerable cost 
(opmerking in de marge: overdone)
 in setting up this model, gathering the 
necessary information, and finding ways to 
still be able to communicate with those 
concerned on the techniques you use and 
the significance of the results you get. 
Although a price is to be paid for 
maintaining simplicity, it might still be lower 
than the price tag on a more fully specified 
decision analysis.

However, there are ways to do better, 
involving but little extra effort. You might 
use a more flexible utility function, more 
responsive to your preferences in the level 
of mastery you want to reach with your 
instruction.



- - - - - - - - - - - - - - - - - - - - 

1)  The 'combination' would probably only be 
additive, so simplicity can be retained.
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A slightly more complicated case with 
linear utility.

Maybe you feel that there is some level of 
mastery that you prefer relatively more 
than other levels. More precisely: there 
may be a level of mastery where a small 
gain in mastery is preferred to the same 
gain at other, lower or higher, levels of 
mastery. You may use a rating technique to 
locate that preferred level, let's call it the 
mastery score, e.g. the technique used by 
Siegel (1957), Becker and Siegel (1962). In 
fact you would be deriving your utility 
function on mastery level, so techniques 
given by Keeney and Raiffa (1976) could 
also be used. For the purpose of this 
paragraph I will only use the information on 
the mastery score.



Now you may specify a linear utility function 
on mastery from zero until the mastery 
score d. You are free to scale it as zero at 
zero mastery, and one at the mastery 
score:

um = m/d for 0 ≤ m ≤ d (10)

Concerning higher mastery levels your 
preferences may be rather neutral: you 
regard them highly but you are aware of 
the maybe great outlay in extra time spent. 
Maybe utility could be taken as on the 
constant value of 1, formula(11) or even 
decelerating linearly, formula (12).

um = 1 for d ≤ m ≤ 1 (11)

um = d/m for d ≤ m ≤ 1 (12)

For the decision alternative 'pass', the 
combined functions (10) and (11) (or the 
functions (10) and (12), or some other 
linear variant) will also be the terminal 
utility function, given test score x.
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Now the expected terminal utility under the 
decision 'pass' takes a more complicated 
form, because of the break at the mastery 
score d:

E(up | x ) =   ∫
0

d
 (m/d) f(m x) dm  +f f(m x)dm   

∫
d

1
 f( m x )  dm (13)

For the decision alternative 'remediate' it is 
again assumed that the cost of remediation 
is the constant c, to be added to the utility 
function on mastery level to get the 
terminal utility function (c of course being a 
negative quantity). Expected terminal utility 
of the decision 'remediate' is now:

E(ur| x ) =   ∫
0

d
 (c + m/d) f( mr x ) dm +  ∫

d

1
 

( 1 + c ) f( mr x ) dm



=  c +  ∫
0

d
 (m/d) f(mr x) dm +    ∫

d

1
 f( mr x ) 

dm (14)

In this case you can't get away with it without 
specifying both probability models f(m x) 
and f(m r x). A natural thing to do when you 
are dealing with achievement tests is to 
choose the beta binomial model. The 
distribution of observed scores f(x) is 
approximated by the beta binomial 
distribution BeBi(a, b, n), the parameters a 
and b are estimated using formulas 15 and 
16 (method of moments), n being the 
number of test items, x ̅the mean observed 
testscore, s the variance of the observed 
testscores:

         s2 - x(̅ n - x)̅
b  =  –––––––––––––––––––
(15)
         x ̅- ns2/(n - x)̅

a = x ̅/ ( n - x)̅ (16)

Assuming linear regression of mastery on 
observed score, the mastery distribution 



will be the beta distribution Be(a, b):

f(m) = B-1 ( a, b ) ma-1 ( 1  m ) bb-1

(17)

( a + b - 1 )!
where B(a, b) = –––––––––––––––––

(18)
( a - 1 )! ( b - 1 )!
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The observed score distribution given 
mastery will under this model be the 
binomial distribution:

n
f( x|m ) =  (   ) mx ( 1  m )x (19)

x
What I am looking for is, however, the 

reversed conditional distribution f(m|x). 
Using a wellknown relation, it can easily be 
deducted that:

f(m|x) = f(m)f(x|m)/f( x ) = ma+x-1 (1 - m)b+n-

x-1 / B(a+x,b+n-x), (20)



f(m|x) being also a beta distribution.

Now for the second probability model, f(mr|x): 
you might approximate this by assuming it 
to be also a beta distribution, having a 
mean value that is higher than that of f(m|
x) equal to the estimated effect remediation 
has on the mean mastery level of testees 
having testscore x on the first test. 

When there are indications that the variance 
of f(mr|x) is appreciably greater than that of 
f(m|x), you can also adapt the variance 
accordingly, using the disattenuated 
correlation between test scores on both 
tests, obtained in your validation study.

Now the mean of Be(a+x, b+nx) is

( a + x ) / ( a + b + n ) (21)

and M be ing the mean effec t that 
remediation has on students with test score 
x, the mean of f(mr|x) would be

(a+x) /(a+b+n) + M = (a+x+M(a+b+n)) / 



(a+b+n) (22)

or the distribution Be (a+x+M(a+b+n), 
b+nx-M(a+b+n)) (23)

The variance of this last beta distribution is 
equal to:

(a+x+M(a+b+n) ) (b+n x M(a+b+n) )

––––––––––––––––––––––––––––––––––
––––––– (24)

      (a+b+n)2 (a+b+n+1)

I f you correct on the basis of the 
disattenuated correlation r between both 
tests you choose (positive) constants c and 
d such that Be(a+xc+M(a+b+n), b+nxd?
I(a+b+n)) will have the same mean as the 
beta distribution in formula (23), and a 
variance that is greater by a factor 1/r2. A 
few trials will suffice.
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To avoid repeating formulas that only in the 
algebraic form seem formidable, I will call 



f (mr | x ) the Be ta d is t r ibu t ion w i th 
parameters a'+x, and b'+n-x: Be(a'+x, b'+n-
x).

In formulas (13) and (14) for the expected 
terminal utilities we met an integral that can 
now be evaluated;

 m(a+x- 1)!(b+n-
x-1)!   ∫

0

d
 m f(m|x) dm = ∫

0

d
  –––––––––––––––– 

ma+x-1(1-m)b+n-x-1 dm (a+b+n-l)!

(a+b+n)   (a+x)!(b+n-x-1)! 
  =    ∫

0

d
 –––––––– ––––––––––––––  ma+x 

(1-m)b+n-x-1 dm (25)   (a+x)        (a+b+n)!

where the first factor, being a constant, can 
be brought before the integral, and the 
other three factors constitute a beta 
distribution with parameters (a+x+1) and 
(b+nx).

Writing formula (25) in the form:

(a+b+n)
–––––––     ∫

0

d
 Be (a+x+1, b+n-x)  dm,



(a+b+n)
–––––––     ∫

0

d
 Be (a+x+1, b+n-x)  dm,

(26) (a+x)

the expected terminal utilities can now be 
written:

E(u p | x )  = (a+b+n) / (d(a+x)) Ú0d 
Be(a+x+1, b+nx) dm + Úd1 Be(a+x, b+nx) 
dm

(27)

a+b+n
E(up|x) = ––––––– ∫

0

d
Be(a+x+1,b+n-x) dm  

∫
d

1
 Be(a+x,b+n-x)dm (27)

 d(a+x)

and

     a'+b'+n
E(ur|x) = c+ ––––––– ∫

0

d
Be(a'+x+1,b'+n-x) 

dm  ∫
d

1
 Be(a'+x,b'+n-x)dm. (28)

 d(a'+x)

The integrals can be solved analytically with 
great effort, numerically, from K. Pearson's 
Tables of the incomplete BetaFunction, 
Biometrika, London 1934, or from tables of 



the cumulative binomial function G(p|r, n) 
by using the relations:

F(d|a, b) = G(a|d, a+b-1) x ≤ 0.5

G(d|a, b) = G(b|1-d, a+b-1) x ≥ 0 . 5
(29)

for values of a and b at least equal to 1 
(Raiffa and Schlaifer 1962, p. 217).
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Having evaluated both expected terminal 
utilities, you are ready to choose the 
optimal action, that being the action having 
the greater expected terminal utility.

Again it is clear that the evaluated effect of 
remediation competes with the cost c, the 
greater term winning the contest.

Now there does not seem to be an easy 
formula to derive the optimal standard 
analytically. You may assume monotonicity, 
and find the optimal standard in three or 
four



One remark concerning the betabinomial fit 
must be made. If the number of testees is 
small, the estimators may not be very 
stable, and some care must be exercised 
in interpreting results. However, a small 
number of testees or not, the decision 
maker will have to make his decision, 
operating on the best information he has, 
be it ever so scanty. So the model may be 
used even with small numbers: using the 
model will give you greater expected 
benefit than not using it. This principle of 
decision analysis (Raiffa and Keeney 1976, 
L ind ley 1976 was a l ready c lear ly 
formulated bij Simon (1943, 1977).



FIGURE 4. Variation, using linear utility 
And a most preferred level of mastery.
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Quadratic terminal utility.

A natural next step to take is to consider 
quadratic terminal utility. Again the decision 
maker determines his or her preferred level 
of mastery, the mastery score. Of course 
levels of mastery higher than this score are 
evaluated higher, but considering the extra 
instructional cost and student time involved 
in reaching these higher levels of mastery, 
i t may be felt that terminal uti l i ty 
considering all costs and benefits is getting 
progressively lower once the mastery 
scored has been left behind by the student. 
Also considering there will not be a sharp 
distinction in terminal utility of mastery 
levels in the direct neighborhood of the 
mastery score, a smooth function like a 
quadratic one might be very useful. Of 
course, terminal utility for the decision 
alternative 'remediate' will again take 



exactly the same form, only now the 
function being lower by the constant -c 
representing the expected cost for 
remediation, given test score x. Figure 5 
pictures the general form of this quadratic 
function.

FIGURE 5. Quadratic terminal utility given 
test score x, for the decision alternative 
'pass'.
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The general algebraic form of this function is



A + Bx + Cx2

(30)

and you should exercise some care in 
choosing the specific form representing 
best your preferences and information.

Now this terminal utility function has the nice 
property that it will result in expected 
terminal utilities consisting of the constant 
A, BE(m|x), and CE((m  E(m | x)2 |x).

Using the beta binomial model developed in 
the last paragraph you will be able to write 
immediately:

E(up | x )  =    ∫
0

1
 (A + Bx + Cx2) Be(a+x, 

b+n-x) dm 
   B (a+x)        C(a+x)(b+n-x) 

  =  A +  –––––––  +  ––––––––––––––––  
(31)     a+b+n         (a+b+n)2 (a+b+n-1)

   B (a'+x)       C(a'+x)
(b'+n-x) 

  E(ur|x) = c  +  A +  –––––––  +  
––––––––––––––––––  (32)    a ' + b ' + n        (a'+b'+n)2(a'+b'+n-1)



    a ' + b ' + n        (a'+b'+n)2(a'+b'+n-1)

It is seen from formulas (31) and (32) that the 
As cancel each other, when comparing 
both expected terminal utilities, so in 
specifying the terminal utility function you 
need not bother what value of A to choose: 
choose the most convenient one.

There is more to remark on both formulas. 
Using M for the mean effect of remediation, 
and r for the disattenuated correlation 
between both tests, and choosing A=0 for 
convenience,

writing m̅ for the expected value of f(m|x), 
and sm

2 for its  variance, formulas (31) and 
(32) become:

E(up|x)  = Bm̅ + C sm
2

(33)

and
E(ur|x)  = c + B(m̅ + M) + C sm

2 /r2 .
(34)

For the optimal standard or cutting score one 
obtains:



C sm
2 ( r2 -1)/r2  = c + BM,

(35)
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among other things emphasizing the 
importance of a greater variance that might 
obtain for the distribution of mastery after 
remediation.

Exponential utility.

When dealing with utility functions involving 
exponential terms , expected terminal utility 
can be calculated using the exponential 
transform T x (s):

Tx (s) ≡ E(e-sx) =   ∫
-∞

∞
 e-sx f(x) dx.

(36)

Keeney & Raiffa (1976, par. 4.9.6) give a list 
of these transforms for some common 



probability distributions. For the beta 
distribution Be(a, b):

(-s)n (a+n)! (a+b-1)! 
E ( e - s x ) = 1 + ∑

n = 1

∞
    

–––––––––––––––––––––(37) (a-1)! n! (a+b+n)!

For the binomial distribution Bi(p, n):

E(e-sx) = (pe-s + 1 - p)n. (38)

For the normal distribution N(x,̅ 𝜎n):

E(e-sx) = exp (-sx ̅+ s2𝜎2). (39)

Special cases of exponential utility functions 
are the cumulative normal distribution 
(Novick & Lindley 1978, Van der Linden 
1980), and the logistic function (Lord and 
Novick 1968) that might also be used as a 
utility function.

These exponential functions give one great 
latitude in specifying one's utilities, the 
possibilities being even greater when sums 
of exponentials are considered.



discussion t.z.t. [dat tezijnertijd is meen ik 
nooit aangebroken]

dec. theor. standard setting
ben wilbrink'begin van herziening van 
Passing Scores
ben wilbrink

 Bij formule 2 ben ik even helemaal op hol 
geslagen, in de misvatting dat ik met die 
formule verwacht nut bedoel, wat niet het 
geval is. Afijn, er zitten ook wel een paar 
interessante ideeën in, dus ik heb het maar 
achteraan de tekst geplakt.  Hier ben ik 
echt helemaal in de war?  Nee hoor, maar 
ik moet duidelijker aangeven dat (1) de 
nutsfunctie over de doelvariabele π  is, en 
(2) de functie van verwacht nut van de 
beslissing p (pass) gegeven x. Het is in 
1980 een fatale vergissing geweest, begin 
k nu (2022) te vermoeden, om over 
outcome or terminal utility te spreken, want 
de ware score / ware beheersing, 



gedefinieerd op de domeinscore, is niet 
waarneembaar, in plaats daarvan moeten 
we werken met het verwachte nut.  
Uiteindelijk is er in dit model nog altijd de 
onzekerheid over de mastery. In het SPA-
model werk ik met behaalde cijfers, omdat 
het in het onderwijs voordurend over die 
cijfers gaat.  Op zich levert dat de grote 
verwarring op tussen nut over cijfers, 
respectievelijk nut over beheersing.  In het 
AP-artikel gaat het over mastery, niet over 
grades.  Het onbevredigende van deze 
n o t a t i e v a n ( 2 ) i s d a t h e t e e n 
flauwekulformule is omdat π  onbekend is.  
Ik kan dus beter meteen over de functie f 
van verwacht nut van de 'pass' beslissing 
spreken:

f(E [u|(pass, xi)]) = ∫
π=0

1
   u(π) L(π|xi) dπ,       

[2]
                           for i 

= 0...n  

[Vergelijk  hoe  deze  formule  in  mijn  SPA-
model zit]. 



[De likelihood is een betaverdeling in geval 
van een binomiaalmodel voor toetsscores, 
zoveel is duidelijk.  Maar hoe neem je deze 
integraal, mijn wiskunde is echt uitgedoofd 
hoor.  Waarom zit ik erover in de knoop? 
Omdat  verwacht  nut  wanneer  de 
nutsfunctie over de ruwe scores gaat, heel 
eenvoudig is,  een somformule] [De vraag 
die deze beslmmering dan oproept is:  kan 
ik  nut  over  domeinscores  op  een 
begrijpelijke  manier  'vertalen'  naar  nut 
over toetsscores?  Dan is de evaluatie snel 
opgelost.  Zou het erg slordig zijn om nut 
over domeinscores gelijk te stellen aan nut 
over toetsscores, omdat de toepassing over 
groepen  leerlingen  gaat?   Zelfs  bij  de 
cesuur  gaat  het  al  gauw  om  meerdere 
leerlingen, maar op dat specifieke punt zou 
zo'n ruwe gelijkstelling een bias op kunnen 
leveren?]



f(E [u|(pass, xi)]) = ∑
y=0

n ( p(yj|xi) .
  ∫

π=0

1
   

u(π) L(π|yj) dπ ),       [2]
 for i, j = 0...n  (n = items 

in toets én herkansing)

  Is dit niet een beetje een onzinformule?  Ik 
moet het wel goed in elkaar zetten.  Is dit 
evalueerbaar? De likelihood is een 
betaverdeling, bijvoorbeeld. Ik ga er verder 
over nadenken. 
Die kans p(yj|xi) is opzichzelf complex, 
tenzij het een onmiddellijk plaatsvindende 
herkansing is. In dat laatste geval is er een 
rech t - toe- rech t -aan voorspe l lende 
toetsscoreverdeling.  Zit er een leer- of 
onderwijstraject tussen, hoe ga ik daar dan 
mee om?  Welnu, empirisch natuurlijk: 
doe onderzoek naar dat veband, dan kan 
dat vervolgens gebruikt worden om zak-
slaag-beslissingen op te baseren (want 
daar is het allemaal om begonnen).  Maar 
zo'n empirisch onderzoek vraagt er dus om 
alle leerlingen het herkansingsproject in te 
s tud ren .  I s da t we l e th i sch te 



verantwoorden, als het praktisch al 
mogelijk zou zijn om iedereen voor de gek 
te houden?  Dat is geen begaan bare weg.  
Zijn er alternatieve mogelijkheden om toch 
iets over de validiteit te weten te komen?  
Bijvoorbeeld een sensitiviteitsanalyse in 
combinatie met indirecte aanwijzingen uit 
andere empirische data/onderzoeken? 

voorspellende  toetsscoreverdeling  over  y 
moet  ik  nog  in  deze  formule  inwerken. 
Tjonge.     In  het  SPA-model  gebeurt  er 
iets  anders  in  module  6  http://
b e n w i l b r i n k . n l / p r o j e c t e n /
spa_expectation.htm  want  (1)  er  zit  een 
leertraject tussen xi en de voorspellende 

toetsscoreverdeling  (in  dit  geval  de 
herkansingstoets)  en  (2)  nutsfunctie  is 
genomen  over  ruwe  scores  van  de 
voorspellende  toetsscoreverdeling 
(herkansingstoets).  

==========================================
=============
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[Om te beginnen deze brief, die vermoedelijk niet is 
verzonden. Ik heb waarschijnlijk telefonisch contact 
gehad met Wim van der Linden, die als redacteur 
voor APM de revisie zou begeleiden. Hij vertelde mij 
dat mijn stuk waarschijnlijk bij hem zoek was 
geraakt, ivm verhuizing in Twente. Beroerd genoeg, 
ik had zelf het retourstuk van Weiss evenmin 
ontvangen, waarschijnlijk omdat het binnen het 
COWO zoek was geraakt voordat ik het in handen 
kreeg. ]

manuscript 800710  [het nummer dat mijn ingediende 
manuscript kreeg] 

With uncomfortable long delay I have completed the 
revision of my manuscript for APM. The reason of 
the long delay is the high priority of writing a book on 
testitem writing techniques, the manuscript of which I 
finished only recently.

David Weiss encouraged me to revise the paper on 
two points:

(1) english sytax and idiom, and
(2) my 'knowledge (or presentation) of the criterion-

referenced
testing problem'.

ad (2). There are several problems here. First, my 
introduction of decision-theoretic terminology was 
much too abstract. Second, I introduced terminology 
that is rather different from that used by authors with 



a background in statistical decision theory, without 
explicitly noting the differences. Third, the 
presentation of my 'new' technique never gets 
convincing because there is no conceptual 
comparison made with the technique as for example 
presented by you (in APM's special issue, 1980).

Accordingly, I have written a new introduction, where I 
present my 'new' technique in juxtaposition to the 
'old' technique. The presentation problem I have tried 
to solve by choosing the theme that decision-
theoretic standard-setting techniques presuppose a 
true cutoff score, and showing this to be a 
misconception. Also I emphasize the role that 
evaluated effects of remediation have to play in any 
complete decision-theoretic standard-setting 
technique. The technical part of the manuscript I 
have kept unchanged (except syntactical and minor 
textual changes).

ad (1) My syntax and idiom were ridiculous, I was 
simply not aware of the rather stringent rules of 
syntax of the english language. In the new 
manuscript I have checked syntax and idiom to the 
best of my knowledge (with the help of friends). Also 
I will have the manuscript corrected by some 
knowledgeable friends.

abstract

The decision theoretic approach to standard setting on 
(criterion-referenced) tests is still the most promising 



among the empirical approaches. Nevertheless, 
practical application is hindered by some conceptual 
difficulties. The most important misconception is the 
idea that a true cutoff score is assumed in all 
desision theoretic techniques, imparting them with a 
high degree of what Glass (1978) calls 'arbitrariness.' 
It will be shown that decision theory does not 
prusuppose the existence of true cutoff scores. 
Another crucial issue is the assignment of utilities to 
possible decision outcomes. In the known literature, 
as for example reviewed by Van der Linden (1980), 
no applicable techniques for the determination of 
utilities are presented. One of the reasons for this 
o m i s s i o n m a y b e f o u n d i n t h e n e g l e c t 
of the role that expected results of remedial 
instruction given to failed examinees must 
necessarily play in the assignment of utilities. A 
careful analysis is presented of the utility structure of 
the decision situation, leading to a transparent 
decision-theoretic technique for standard-setting in a 
very straightforward manner. Mathematical 
techniques are presented that enable the use of 
utility functions in linear, quadratic, exponential and 
normal distribution form, as well as of threshold 
utility. Numerical examples are given of the 
application of the technique, for several of the 
mentioned utility function possibilities.

Terminal utility and utility proper

In the typical presentation of decision-theoretic models 



the utilities involved are to be taken as the terminal 
utilities, i.e. the utilities entailed when corresponding 
decisions are or would have been taken. In pass-fail 
decision making there are two possible actions to be 
taken, passing or failing xx the examinee, so there 
are two terminal utility functions, each contingent on 
one particular action or decision. In statistical 
decision theory it is not usual to further investigate 
the decision problem in terms of utilities proper, 
because terminal utility functions are simply 
regarded as given. what exactly these terminal utility 
functions represent remains somewhat obscure. 
What is worse, however, is the suggestion 
emanating from this approach that the decision 
maker somehow or other will have to express his 
preferences directly in terms of terminal utilities, i.e. 
in terms of utilities 'truly' resulting from the possible 
actions.

Only in special cases is it possible to directly assess 
terminal utilities, in most cases it will be necassary to 
first assess one's utilities over the possibly quite 
different criterion variables that are relevant tot the 
optimization of the decision procedure. In the 
digression on threshold utility an example has 
already and terminal utility. Here I will explain the 
difference in the context of linear utility.

The linear utility function on domain scores has been 
determined as u(d) = pi. First consider the decision 
to pass a student with a given observed testscore x: 
when no other (cost or) criterion variables are 
relevant, the terminal utility entailed by this decision 
is equal to the utility of the true score of this student. 



In this case the terminal utility function ut(p,pi) 
contingent on the pass decision is equal to the utility 
function on the domain scores.

Now consider the decision to fail the student: how do 
we get at the terminal utility function ut(r,𝜏)? The 
most important criterion variable will still be the 
domain score of the student, and the utility function 
on domain scores of course is u(d) = pi. But what 
domain score are we talking of exactly? Failed 
students are provided with one or another form of 
remedial instruction, hopefully resulting in a higher 
domain score (better mastery). Well, then, the 
criterion variable relevant to the decision to retain 
students is the domain score reached been given of 
this difference between utility proper   .......... (blz. 
zoek of weggedaan?)

 

Figure 2b gives the Generally Accepted Picture's 
(GAP) typical assumption: two terminal utility 
functions, defined on the same true score (domain 
score) scale underlying the test used, and crossing 
each other (otherwise a non-trivial cut-off score 
would not exist).

The problem with the Generally Accepted Picture 
(GAP) is, again, that it is left unclear how the 
terminal utility function for the fail decision is to be 
determined. The difficult task of the decision maker 
is to

(1) determine what will count as criterion variables for 
the results of remedial instruction, 



(2) intuitively and implicitly determine the appropriate 
utility functions in accordance with the utility scale 
that is implicit in the terminal utility function of the 
pass-decision,

(3) use magic to translate this implicit terminal utility 
function to the domain score scale that ut(p,pi) is 
placed on, and 

(4) use more magic to correct somehow or other for the 
expected effect of remediation conditional on true 
scores pi.

No wizards or supercomputers will be able to do this 
properly. A proponent of GAP may counter with the 
observation that the decision maker need only 
evaluate the seriousness of decision errors, for 
surely that is what utilities in the last resort are? That 
is nonsense, however, because decision errors can 
only be spoken of in the case threshold utility is 
appropriate and that is not the case under scrutiny. 
Seriousness of 'errors' must one way or other refer to 
expected positive or negative results of remediation 
or foregone remediation, and that brings us back to 
where we started. Wilbrink (1980a and b) gave a 
great deal of attention to this impossible predicament 
GAP leads the decision maker in, also when 
threshold utilities are appropriate.
Is it not possible to 'reconstruct' GAP's ut(r,pi) using 
the results of the complete decision analysis based 
on terminal utility functions like those in figure 2a? I 
don't think so, for that involves a method of 
projecting back, the mathematics of which are 
unclear: (1) determine expected terminal utility 
function on observed scores (next paragraph); 2) 



translate these (how?) to pseudo terminal utilities on 
the underlying true score scale, and (3) because this 
will not result in a mathematical function, some kind 
of datareduction (how?) will have to be done. 
Improbable.

4

Now this is really quite serious, it means that GAP 
does not allow a realistic determination of its terminal 
utility function ut(r,pi), unless it could be shown from 
which utility functions proper it is the combination. As 
far as costs of remediation are concerned, it can be 
maintained that, when these cost may be taken to be 
constant for every given true score, these costs are 
represented in ut(r,pi) in the form of a vertical 
translation equivalent to the evaluated cost. But how 
to explain the inclination of u t(r,pi),and its elevation 
corrected for the utility of costs? I have no answer.

The assumption that a 'true cutoff score' is given

It was Glass who directed attention to the declared 
assumption of decision theoretic standardsetting 
methods that somehow or other a true cutoff score 
already should be available. (Glass, 1978). In all 
cases as cited by Glass, this true cutoff score was 
the demarcation of 'mastery' versus 'nonmastery'. As 
far as these methods used threshold utility functions, 



this is  not to be wondered at, because the choice of 
threshold utility implies or is equivalent to the choice 
of a true cutoff score. I will return to this particular 
case later. The remarkable point in Glass' remark 
was that also the use of linear utility functions by Van 
der Linden and Mellenbergh (1977) seemed to 
depend on this true cutoff score. 

"But in their application of the technique, they accepted 
as the criterion of mastery the instructor's opinion 
that 80 % of the items correct was indicative of 
'mastery'." (Glass, 1978). 

And indeed, this assumption was explicitly made by 
Van der Linden and Mellenbergh (1977), as it also 
was by Van der Linden (1980), also cited below). 
Now the review by Glass was fairly thorough, 
nevertheless he missed one important report, by 
Davis, Hickman and Novick (1973). These authors 
p r e s e n t a ( B a y e s i a n ) d e c i s i o n t h e o r e t i c 
standardsetting method that does not assume the 
existence of a true cutoff score, except in the case of 
threshold utility. In using linear, exponential, etc. 
utility functions a 'true cutoff' is not assumed, need 
not be determined, plays no role whatsoever. The 
question is, then: was the true cutoff score 
assumption of Van der Linden and Mellenbergh 
(1977) necessary? It was not, as I will show later. 
The critical review of Glass (1977) was highly 
influential, and left its traces in the later reviews by 
Shepard (1980) [shepard heeft een belangrjke noot 
geplaatst bij het artikel van Glass, die het niet heeft 



over standards voor deeltoetsjes, maar voor national 
assessment], Van der Linden (1980) and Traub and 
Rowley (1980). Shepard (1980) on empirical 
methods for adjusting standards:

"They include the more technical methods and convey 
the impression that standards can be determined 
with scientific precision. In truth, however, these 
approaches do not determine 4 standard; rather, 
they presume that a standard already exists on an 
external criterion and merely translate this into a 
cutoff score on the test." Shepard, 1980, p. 459.

The verdict of Shepard is strongly underscored by Van 
der Linden in his review of decisionthereoretic 
models:

"(...) it is emphasized that in what follows two different 
cutoff scores are involved  the true and the observed 
cutoff scores. Decision theory can not be used to set 
the former; it can be used to set the latter after a 
solution to the former has been obtained. (...) 
Though this has not always been seen (e.g. Glass, 
1978) the dec is ion theore t ic approach to 
criterionreferenced testing is thus no standardsetting 
technique but technique to min imize the 
consequences of measurement Usampling error, 
which, preferably as a part of the normal routine, 
ought to follow each time a standardsetting 
technique is used." Van der Linden, 1980, p. 470.

Van der Linden can be shown to be wrong on this 



important issue: the secondary role assigned to the 
decision-theoretic approach is unduly pessimistic. 
What reason could Van der Linden have to entertain 
this opinion? he surely gave no mathematical 
evidence for it. Again, it is a particular Picture of 
criterion-refenced measurement that plays havoc 
with conceptual clearness. Van der Linden 
formulates his Picture on the same page (1980. P. 
470) as follows.

"One of the principal uses of criterion-referenced 
measurement is in the assignment of students to 
mastery states. Typically, this involves the selection 
of a cutoff score on the criterion-referenced scale T. 
Students with true scores exceeding this cutoff score 
are considered masters; they are deemed to have 
reached the learning objectives and may proceed 
with the next unit or task. Students below this cutoff 
score are the nonmasters; usually, they are provided 
with extra learning time or remedial teaching."

This Picture is adequate as regards cases where 
threshold utility can be used, i.e. where there is a 
sharp and clear demarcation between mastery and 
nonmastery ('states'). But Van der Linden stretches 
the Picture to include cases where mastery is less an 
'all-or-nothing' state, and more a gradual thing, so 
that linear and other utility functions are more 
adequate than threshold utility.

A digression on threshold utility



Utility is the qualified evaluation of (possible) results of 
decisions, treatments, etcetera. In surgery, for 
example, the most important criterion 'variable' is 
ultimate death or life; as long as no comparison with 
other criterion variables is involved, you may choose 
your u scale for utility freely, A good choice (from the 
mathematical point of view) is to assign utility zero to 
the possible result 'death', and utility one to the 
possible result 'life'. Patient and surgeon surely can 
agree on this. Now, for all practical purposes, 'life' is 
not a gradual attribute, so these are merely two 
different utility assignments, and no threshold utility 
function is involved. In criterion-referenced decision-
making the important criterion variable is level of 
mastery, and this is a gradual attribute, to be 
quantified for example as the percentage of 
questions from a circumscribed domain the 
examinee would answer correctly when given the 
opportunity to answer all items in the domain.

In (very special) cases there may be reasons to assign 
utility zero to all levels of (non)mastery below a 
certain percentage, and utility one to all levels of 
mastery above this percentage or 'true cutoff score'. 
This is an example of a threshold utility function, the 
threshold being the true cutoff score, and the 'height' 
of the threshold depending on the difference 
between utilities assigned to scores to the left, 
respectively to the right of this true score. The choice 
of zero utility for non-mastery, and utility one for 
mastery has no particular significance except 
mathematical and conceptual expediency. Utilities 



assigned to other criterion variables, expenditure on 
remedial instruction for example, -must oil course be 
compatible to the already set utility scale. In a 
particular instructional situation the cost of remedial 
instruction could be evaluated as for example -.2, 
meaning that mastery reached after remedial 
instruction is evaluated as having utility 1 minus .2 
is .8. For technical details see the paragraph on the 
threshold utility function, later in this article.

[fig. 1 here appr, with threshold and linear utility]

A digression on linear utility

In criterion-referenced measurement the criterion 
variable usually is the proportion of items from a 
well-defined domain that the examinee would answer 
correctly when given the opportunity. Or, in the words 
of Harris and Stewart (1971) as cited by Glass 
(1978):

"A pure criterion-referenced test is one consisting of a 
sample of production tasks drawn from a well-
defined population of performances, a sample that 
may be used to estimate the proportion of 
performances in that population at which the student 
can succeed."

Let's call this proportion of the domain score or true 
score pi. This domain score is the student's 
realization of the educational objectives (it's them 



that were translated in the definition of which items 
belong to the domain), evaluation of domain scores 
or will normally result in a positively sloped utility 
function on domain scores. The linear function is the 
most simplest example, it expresses an evaluation of 
domain scores that is proportional to the domain 
scores themselves. its general form is u(d)= a + 
b(pi), but when you are still free to choose your scale 
of utility, it may be expressed as u(d)=pi. and Figure 
1 presents this nice and uncomplicated function. 
Remark that no true cutoff score is needed to 
determine this utility function, the only thing the 
decision maker has to be sure of is that he or she 
evaluates (d i f ferences in) domain scores 
proportionally.

Utility as a function of (distance from) the true 
cutoff score

In the Picture that somehow or other 'masters' are to 
be differentiated from 'non-masters', threshold utility 
is the paradigm case, at least until second thoughts 
begin to trouble the researcher's mind. Van der 
Linden and Mellenbergh (1977):

"An obvious disadvantage of the (threshold loss 
function) is that the loss is constant. For instance, a 
not-accepted examinee with a latent score just 
above the cutting score gives the same loss as a 
not-accepted examinee with a latent score far above 
the cutting score. This constant loss can be by using 



a linear loss function." 

[ Note) The term 'loss' as Van der Linden and 
Mellenbergh (1977) and Van der Linden (1980) use 
it, designates the negative of what usually is called 
terminal utility.]

This argument is contingent on the assumption of a 
true cutoff score, an assumption that is adequate 
exactly al long as the use of threshold utility is 
adequate. The moment threshold utility is rejected 
because is does not adequately capture one's 
evaluation of different true scores in that part of the 
scale of the criterion variable that roughly 
corresponds to 'mastery', the assumption of a true 
cutoff score loses its right of existence. It is not 
consistent to use a true cutoff score in ascertaining 
one's preferences over donain scores in the form of 
a linear utility function. But that is exactly the 
approach of Van der Linden and Heilenbergh (1977), 
because in their approach assigned utilities are 
proportional to the difference between the domain 
score pi and the true cutoff score d. This is 
important, because this formulation indicates the 
method to be followed in ascertaining one's 
preferences in terms of domain scores: the method 
of Van der Linden and Mellenbergh presupposes the 
true cutoff score.

In the digression on linear utility is was shown that any 
linear utility function may be reparameterized in the 
form u(d) = pi, when this reparameterization is used 



to determine the scale that utilities are expressed on. 
The amazing conclusion is that also Van der Linden 
and Mellenbergh's (1977) linear utility function on 
domain scores may be written as u(d) = pi, i. e. 
without mention of a true cutoff score. And of 
course, the general form u(d) = a + b(pi - d) contains 
the true cutoff score d, but in no way does a linear 
function written as a function of a particalar score 
depend on that score. (it merely functions as a 
reference point, a new origin).

This particular coincidence in Van der Linden and 
Mellenbergh's (1977) treatment of linear utility 
triggered the hardening of the Generally Accepted 
Picture (GAP) that decision-theoretic standard-
setting presupposes a true cutoff score.

Expected terminal utilities are decisive

Expected terminal utilities have not been mentied 
earlier, because I concentrated on conceptual issues 
concerning utilities and terminal utilities as used in 
decision-theoretic standard-setting. But ultimately it 
must be these expected terminal utilities that are 
decisive with regard to the decision to be taken that 
is optimal. The optimal decision is the decision with 
the higher expected terminal utility. It is terminal 
utility that is expected, because as you will have 
noticed this terminal utility is not connected to 
observed testscores, but to true scores. (this is not 
necessarily so, because a decision-theoretic 



approach to standard-setting is possible with utilities 
proper and terminal utilities defined on obervable 
criterion variables; Wilbrink 1980a and b has given 
this technique, also in juxtaposition to GAP). 
Remember the digression on threshold utility: 
passing a student with true score below .8 results in 
utility zero, passing a student with true score .8 or 
higher results in utility one; the expexted utility of 
passing a student with observed score x is equal to 
the probability that his true score is .8 or higher.

The expected terminal utility of retaining a student for 
remediation involves the conditional probability 
density function on true scores after remediation: 
retaining a student with true score after remediation 
of .8 or higher results in utility .8, true score lower 
than .8 results in utility minus .2. The total expected 
utility of retaining a student is .8 times the probability 
of a true score after remediation of .8 or higher, 
minus .2 times the probability of a lower true score 
after remediation.

In this way it is possible to calculate both expected 
terminal utilities for every observed score x. 
Graphically connecting these points results in the 
expected terminal utility function of passong, 
respectively retaining examinees; where these 
functions cross each other, the optimal cutoff score is 
located. it is these expected terminal utility functions 
that Cronbach and Gleser (1965, 1957) called 
expected payoff functions, or payoff for short. For 
practical purposes it is sufficient to calculate 
algebraically the point where both expected terminal 



utilities are equal to each other, this corresponds to 
the optimal cutoff point score. The expected terminal 
utility functions need not be determined, and neither 
the (summed) expected terminal utilities as is usual 
in so-called normal form analysis as preferred in 
GAP.

So called 'decision errors'

True cutoff scores are not presumed by decision-
theoretic models. Not only that, there is no place for 
this concept in those situations where continuous 
utility functions instead of threshold utility are 
chosen. Where could in the case of linear utility on 
domain scores, a 'true cutoff' be located? However, 
there is an opportunity to use another concept: the 
preferred true score, that has a remote resemblance 
to the true cutoff score. I will introduce the preferred 
true score in the paragraph on quadratic utility. When 
there is no useful place left for these true cutoff 
scores, there obviously is no reason to artificially 
reintroduce them. However, this is exactly what is 
usual in certain kinds of consistency, reliability or 
validity analyses. In the words of Traub and Rowley 
(1980) (I could have cited many others, including 
Taylor and Russell, Cronbach and Gleser, or myself 
for that part):

"If, corresponding to cutoff score c on the observed 
score scale, there is a cutoff score y on the true 
score scale, then the ideal or true decision would be 



to pass a person if his or her true score T equals or 
exceeds y; otherwise, the person should be failed. A 
comparison of the decision based on the observed 
score x with that based on the true score 𝜏 reveals 
whether or not a decision error has occurred."

The curious situation is that an optimal cutoff score has 
been determined without in any way involving the 
concept of a true cutoff score, and then this 'true 
cutoff' is calculated or projected back from this 
optimal cutoff score! But this 'true cutoff score' does 
not correspond to some meaningful state of affairs, it 
is a mere straw man, put up to serve the purposes of 
the believer in reliability analysis. Only when 
threshold utility is appropriate, there is also a 
legitimate place for the 'true cutoff score' concept, 
but then it is equal to the threshold chosen (two 
thresholds in fact, the one on the criterion variable 
appropriate for the pass decision, the other on the 
criterion variable that captures the effects of further 
treatment given after the fail decision). And threshold 
utility may only be appropriate when some kind of 
real classification is to bee made (man and women, 
has phenylketonuria or not, is a suicide risk or not), 
i.e. those cases where the use of (multiple) 
discriminant analysis is appropriate (compare 
Cronbach and Gleser 1965 p. 115).

The implication is that only in case of a real underlying 
classification it makes sense to speak of 'decision 
errors'. When for example linear utility is used, there 
is no sense in which the concept of 'decision error' 



might be appropriate. There simply is no room left for 
the common viewpoint among psychometricians, as 
adequately expressed by Shepard (1980):

"The most important point, which will influence the 
choice about whether or not to set standards, is that 
there is always error attached to the selection of 
cutoff scores. Individuals immediately on either side 
of the standard will be virtually indistinguishable from 
each other. With a good test, valid distinctions can 
be made between those who are well above or well 
below the standard; but passfail distinctions near the 
cutoff will have poor validity because a continuum of 
performance has been 'arbitrarily' dichotomized."

This 'most important point' is quite beside the point, 
because the implicit reference to a true cutoff score 
is inappropriate. That a particular examinee with a 
score very to the cutoff score on the test, may pass 
or fail under influence of luck, is quite another matter. 
The quality of the decision procedure may be 
influenced by using a better or a longer test. The 
index of 'quality' is the total expected terminal utility, 
and what keeps you off from the ideal of perfect 
decisions is the extra cost involved in lengthening 
your test. But this problem is not a standard setting 
problem. The psychometrician will never be able to 
protect examinees against bad luck, and will never 
be able to give satisfactory reasons to the  examinee 
that is only one point short of the cutoff score, why 
he should fail. Luck and bad luck are part of the 
game. More formally: you juridical agreement on the 



way passfail decisions will be taken.
When reference to a true cutoff score is not 

appropriate, when decision errors cannot properly be 
spoken of, it follows that also the study of 
consistency of decisions when using parallel tests is 
quite beside the point. Traub and Rowley (1980):

"A second approach to describing the goodness of the 
dichotomous decision situation is to study the 
correspondence between decisions based on the 
observed scores for two or more parallel tests. This 
approach, too, has its analogue in traditional 
reliability theory, the correlation between observed 
scores on parallel tests."

This is a study in reliability of the test, not of the 
decisions taken.

==========================================
=============

[Yet another manuscript text on the same subject, 
mogelijk is dit toch een latere versie dan het 
manuscript hierboven]

Ik heb alsnog in juni 2002 een paar wijzigingen 
ingevoerd uit oude aantekeningen.]

Conceptual issues in the search for cutoff scores 
on domainreferenced tests.



Contrary to current opinion, decision models (Van der 
Linden/ 1980) can be shown to optimize cutoff 
scores on domainreferenced tests in a nonarbitrary 
way (Glass, 1978), i.e. without the use of pre 
established standards.

posing the problem

Recent reviews, e.g. in Berk (1980a) and in the 1980 
Special Issue on CriterionReferenced Testing 
Technology of this journal, have it as part of the 
'Current Opinion' on cutoff scores in domain-
referenced testing, that there no method in setting 
cutoff scores that does not presuppose a known 
'true' standard in one way or another. The methods 
attributed to Nedelsky and to Angoff presuppose that 
the decision maker has a clear mental picture of the 
Minimally Competent Person. Methods that separate 
known groups of masters and nonmasters, e.g. the 
method of discriminant analysis as used by Zieky 
and Livingston (1977), beg the question in a most 
obvious way. Since the presentation of Mellenbergh 
and Van der Linden (1977), it is said even of decision 
models that "they are techniques for minimizing the 
consequences of measurement and sampling errors 
once the true cutoff has already been chosen" (Berk, 
1980b), or that "the mathematical work in choosing a 
cutoff score along the observed score scale starts 
with the assumption that a standard has already 
been defined, either on the true scale or on the scale 
of the criterion measure; how this standard gets 
defined is never dealt with satisfactorily" (Traub and 



Rowley, 1980). However, decision models can be 
shown to be independent of any preestablished 
standards. Another bias in Current Opinion is the 
neglect of cost and effects of the (remedial) 
treatment that is to be given to failed examinees. To 
set the stage for the extensive treatment of both 
themes, a description of the cutoff score problem in 
domain referenced testing will be given.

A domain-referenced test is constructed to assess the 
performance levels of examinees in relation to a set 
or domain of welldefined tasks, objectives or 
competencies (cf. Hambleton, 1980). In this article, 
the domain of tasks will be taken to be the item pool 
from which the testitems are sampled. This item pool 
actually exists, or may be taken as "a convenient 
conceptualization" (Wilcox, 1980). The domain score 
represents the proportion of items an examinee 
would answer correctly if the examinee were to 
answer every item in the domain. Note that the 
domain score is a generic true score, not the true 
score specific to the test used. The domain score is 
not corrected for guessing (see Wilmink and Nevels, 
1982, on domain scores that are corrected for 
guessing). Domain-referenced is preferred to 
criterion-referenced, because the domain is what is 
referred to, and calling the domain the criterion 
invites misunderstanding (as history shows, see e.g. 
Hambleton 1980).

Cutoff scores on domain referenced tests will be 
needed in some cases, e.g. in certification (cf. 
Shepard, 1980) or in Individually Prescribed 
Instruction (IPI) to monitor the students progress 



from unit to unit. It is the latter use, called pupil 
diagnosis by Shepard, that is focused upon in this 
article. That includes annual tests for gradetograde 
promotion, where the cutoff score should correspond 
to the point where the expected (evaluated) results 
of repetition of a grade of schooling balance the 
expected (evaluated) results entailed by passing the 
student with an observed score equal to the cutoff.

The critical comment of Jackson (1975) emphasizes 
this point.

"Very seldom is there any substantial help provided to 
repeating pupils; instead, they are recycled through a 
program that was inappropriate for them the first time 
and that may be equally inappropriate and of less 
interest to them the second time." 

'Cutoff score' is a more neutral term than 'Passing 
score', ladvancement score' or the equivocal 
'standard'. In some cases, students may be retained 
for remedial instruction only after scoring below the 
cutoff in two or three consecutive unittests. Cutoff 
scores also need not refer to a 'standard' or 'true 
cutoff score' specified on the domain score scale.

Now the crucial question is how to choose the cutoff 
score on a given test, used in a given instructional 
situation. What the best or optimal cutoff score is will 
depend on (a) the educational objectives, and (b) the 
cost(s) of remedial instruction. To keep the problem 
tractable, the decision situation has to be specified 
carefully. In the following a simple but realistic 
situation will be employed, to highlight the the 



conceptual issues involved. The quality and duration 
of regular instruction, as well as of remedial 
instruction, are supposed to be given. Enhancement 
of instructional quality is not at issue here. The cutoff 
score is meant to separate students who may 
proceed to the next instructional unit or grade from 
students who are to recieve remedial instruction. The 
domain is supposed to be specified already; and the 
number of items in the test is supposed to be given. 
Note that optimizing cutoff scores is not the same 
kind of problem as that of finding the optimal number 
of items to use in the test (see Wilcox, 1980, on the 
latter topic). Finally, the realized domain'score is 
supposed to be the only educational objective to be 
maximized, and the cost of remedial instruction is the 
only cost to be minimized.

In this decision situation the optimal cutoff score might 
be derived by first solving this problem: Given a 
student with a particular observed score, if he or she 
were to be given  remedial instruction, would the 
expected gain in his or her domain score be worth 
the extra cost? Whether the latter specific 
formulation, or the former more general formulation 
is chosen, the solution is to be found only through 
decision theory.  

two kinds of decision theory

Most studies on the optimal cutoff score problem have 
been inspired by what is called statistical decision 
theory (presented by e.g. Chernoff and Moses, 1959, 
or DeGroot, 1970), the science of decision making 



under uncertainty. However, the handling of 
uncertainty is certainly not the only feature of 
statistical decision theory, as the influential statement 
of Van der Linden (1980) seems to suggest:  

"(..) the decision-theoretic approach to criterion-
referenced testing is thus no standard-setting 
technique, but a technique to minimize the 
consequences of measurement and sampling error, 
which, preferably as a part of the normal routine, 
ought to follow each time a standard-setting 
technique is used." 

The whole point in using statistical decision theory is its 
explicit treatment of the utilities of the expected 
outcomes contingent on the decision alternatives. 
(The utility of an outcome is a particular evaluation of 
that outcome). Typically, statistical decision theory 
takes it for granted that the decision maker has 
already determined the relevant utilities.  

Statistical decision theory will handle the uncertainties  
involved in the cutoff score problem. Which 
uncertainties? Measurement and sampling error 
were already mentioned. Another uncertainty 
involved is the gain in domain score, that is due to 
remedial instruction. The decision models presented 
by Van der Linden (1980) do not handle the latter 
uncertainty, because it is implicitly absorbed in the 
assumed utlities. I will come back to this particular 
point later.  

Now the only problem left is how to compare the gain 
in domain score to the remediation cost involved. It is 



here that decision analysis, the twin brother of 
statistical decison theory, has its part to play. 
Decision analysis (e.g. Raiffa, 1968, Keeney and 
Raiffa, 1976, LaValle, 1977) supplies techniques to 
evaluate possible outcomes on a common utility 
scale. The utility function on the domain score scale 
is the concrete expression of the evaluation of 
different domain scores has found; the cost of 
remediation is to be expresssed as (negative) utility 
also. Bringing domain scores and remediation cost 
on the same scale of utility makes it possible to 
compare them. The solution of the optimal cutoff 
score problem will then be given by the techniques of 
statistical decision theory, using the utility structure 
as derived through decision analysis.

The decision situation and its approach sketched 
above summarize the exposition that is to follow. 
First the cutoff score problem will be analyzed 
conceptually, in juxtaposition to what I have called 
Current Opinion. Then the technique to find the 
optimal cutoff score will be developed in a 
constructive way.In actual practice the technique 
may be employed in the way it is presented here. 
However, the main purpose of the more technical 
part of this article is to conceptually clarify the cutoff 
score problem. The acquired insight in the cutoff 
score problem may lead to solutions that do not 
employ the technique that is presented here. For 
example, in Individually Prescribed Instruction 
optimal cutoff scores on the unittests may be found 
simultaneously through experimenting. Finally, an 
important indirect use of the technique to be 



presented is in simulation studies, e.g. sensitivity 
analyses.

Current Opninion and the conceptual issues it 
entails

In this section I will discuss the conceptual issues that 
arise when decison models are used to optimize 
cutoff scores on domain referenced tests. In this 
discussion I will introduce and illustrate the concepts 
from decision theory as they are needed. The 
concept of threshold utility is central to the notion in 
Current Opinion that decision models would assume 
pre-established true cutoff scores, so this concept 
will first be presented.

Digression on threshold utility

In decision making, the best decision alternative is the 
alternative that results in the outcome that is the 
most highly evaluated or that has the highest utility. 
When outcomes are uncertain, the bes t dec i s i on 
alternative is the alternative having the highest 
expected utility, the expectation being taken over all 
outcomes that are possible under the decision taken. 
For example, in surgery the important outcomes may 
be 'life' or 'dead; 'life' may be assigned utility one, 
'dead' may be assigned utility zero. This particular 
choice of utilities establishes the utility scale on 
which all other utilities, for example the utility of a 
crippled life when surgery is refused, are to be 



expressed. In this illustration the expected utility of 
the decision to operate is equal to one times the 
probability of a succesfull operation; if this expected 
utility is higher than the utility of not operating, the 
rational thing to do is to assent to the plan for 
surgery. Because 'life' or 'dead' is not a gradual 
attribute, the utility assignment is discrete and not in 
the form of a threshold function. 

In domainreferenced testing, the relevant outcome is a 
gradual attribute: the domain score or the proportion 
of items in the domain the examinee would have 
answered correctly were he to answer every item in 
the domain. In some (very special) cases there mey 
be reasons to assign utility zero to all domain scores 
below a certain proportion, and utility one to all 
domain scores equal to or higher than this 
proportion. This would be an example of the 
assignment of a threshold utility function to the 
domain score scale, the threshold being located at 
what is often called the true cutoff score or the 
mastery score. Utilities that have to be assigned to 
other outcomes or attributes will have to be 
expressed on the utility scale that is established by 
the (freely chosen) threshold utility function on the 
domain score scale. For example, the cost of 
remedial instruction might be evaluated as equal to .
2 on the established utility scale. If the cost of 
remediation is a constant, i.e. independent of domain 
scores, then the utility of a particular domain score 
as reached after remediation is to be dimished by .2. 
For example, domain scores higher than the true 
cutoff score are evaluated as having a terminal utility 



of 1  .2 = .8. The decision to retain the pupil or not 
will have to be taken in the face of uncertainty, 
because the domain score is not known. In the 
example given, the pupil will be retained for remedial 
instructed only if the expected result of remedial 
instruction, given the observed score on the test, is 
higher than a difference of .2 in the probability that 
the domain score of this pupil is above the true cutoff 
score. For the technical details involved, see the 
paragraph on threshold utility in the next section.

The assumption of a pre-established true cutoff 
score

It was Glass (1978) who directed attention to the fact 
that authors of papers on the use of decision theory 
in optimizing cutoff scores expressed the explicit 
assumption of a pre-established true cutoff score or 
mastery score on the domain score scale. This 
assumption is quite natural when threshold utility is 
appropriate, because the assignment of a treshold 
utility function on the domain score scale implies or 
is equivalent to the choice of a true cutoff score or 
mastery score. I will later on return to this particular 
case. What was really remarkable in the point made 
by Glass, was that the use of linear utility functions 
by Van der Linden and Mellenbergh (1977) also 
seemed to depend on pre-established true cutoff 
scores: "But in their application of the technique, 
they accepted as the criterion of mastery the 
instructor's opinion that 80 % of the items correct 



was indicative of 'mastery'." (Glass, 1978). Had 
Glass read the important report by Davis, Hickman 
and Novick (1973), he would certainly have 
corrected his judgment. These authors presented a 
(Bayesian) decision-theoretic technique to optimize 
cutoff scores, not assuming pre-established true 
cutoff scores. When using linear or other continuous 
utility functions, a true cutoff score need not be 
assumed nor determined, it plays no role 
whatsoever. The question then is: was it necessary 
for Van der Linden and Mellenbergh (1977) to 
assume a pre-established true cutoff score? It was 
not, as I will later on show. However, the critical 
review of Glass (1978) was highly influential, and 
especially so on this point of the assumption of pre-
established true cutoff scores, and it left its traces in 
the later reviews by Shepard (1980), Van der Linden 
(1980) and Traub and Rowley (1980). I cite Shepard 
on empirical methods for adjusting standards:

"They include the more technical methods and convey 
the impression that standards can be determined 
with scientific precision. In truth, however, these 
approaches do not determine a standard; rather, 
they presume that a standard already exists on an 
external criterion and merely translate this into a 
cutoff score on the test."

This verdict by Shepard is strongly underscored by Van 
der Linden in his review of decison models:

"( ... ) it is emphasized that in what follows two different 



cutoff scores are involved  the true and the observed 
cutoff scores. Decision theory can not be used to set 
the former; it can be used to set the latter after a 
solution to the former has been obtained. ( ... ) 
Though this has not always been seen (e.g. Glass, 
1978) the decisiontheoretic approach to ctterion 
referenced testing is thus no standardsetting 
technique but a technique to minimize the 
consequences of measurement and sampling error, 
which, preferably as a part of the normal routine, 
ought to follow each time a standardsetting 
technique is used."

Van der Linden can be shown to be wrong in his 
delegating the  decision-theoretic approach a role of 
only secondary importance.  What reason could Van 
der Linden have for his opinion?  Surely he 
presented no mathematical evidence for it. Probably  
it is a particular 'Picture' of domainreferenced 
measurement  that plays havoc with conceptual 
clarity. Van der Linden  formulates his Picture on the 
same page (1980, p. 470) as follows:

"One of the principal uses of criterion-referenced 
measurement is in the assignment of students to 
mastery states. Typically, this involves the selection 
of a cutoff score on the criterion-referenced scale T. 
Students with true scores exceeding this cutoff score 
are considered masters; they are deemed to have 
reached the learning objectives and may proceed 
with the next unit or task. Students below this cutoff 
score are the non-masters; usually, they are 



provided with extra learning time or remedial 
teaching."

 
This Picture is adequate as regards the cases where 

threshold utility can be used, i.e. where there is a 
sharp and clear demarcation between (the 'states' of) 
mastery and nonmastery. But Van der Linden, and of 
course he is not the only one to do so, stretches the 
Picture to include the cases where mastery is less an 
'all-or-nothing' state than a gradual attribute. These 
are exactly the cases where linear or other 
contiunous utility functions on the domain score 
scale are appropriate.

–––––––––––––––––––––––––
figure 1 here approximately      [in dit manuscript geen 

figuur bijgesloten, maar zie manuscript hierbeneden 
voor 2 figuren]

–––––––––––––––––––––––––

Digression on linear utility

Domain-referenced tests are used in an educational 
setting where the relevant outcome of instruction is 
understood to be the domain score or level of 
mastery of the student. Usually the relation between 
a domain score and its evaluation will be a positive 
one: the higher domain score is evaluated as having 
more utility than the lower domain score. Of course, 
this is an elliptical way of speaking: what is evaluated 
is the domain score belonging to the student who 
completed the course. In the following, the 



fundamentally discrete character of the domain score 
scale will be disregarded in order to be able to use 
continuous utility functions on the domain score 
scale. In this broad class of utility functions the linear 
utility function is the most simple one, its general 
form beingu=a+b𝜋, where 𝜋 is the domain score. 
Because the decision maker is free in choosing his 
utility scale, he may specify it so that utility zero is 
assigned to the domain score of zero, and utility one 
is assigned to the domain score of one. Figure lb 
pictures this utility function u=𝜋.

The linear utility function is appropriate when 
(differences in) domain scores are evaluated 
proportionally. A domain of test-items concerning 
rather disconnected facts from the subjectmatter of 
teaching might give rise to a linear utility function. 
But also the domain consisting of rather difficult 
problems might invite the decision maker to use the 
linear utility function. I mention these examples only 
to indicate the nature of the linear utility function. In 
actual practice, utility functions are not determined in 
the rather off-hand waythese examples seem to 
suggest. The decision maker will have to use 
particular rating techniques (see Keeney and Raiffa 
1976, Novick and Lindley 1979, among others) to 
establish three or more points of his utility curve, 
then the next step is to fit a linear or other continuous 
function on these points.

Note that a pre-established true cutoff score is not 
assumed here. 



Utility as function of (the distance from) the true 
cutoff score

Threshold utility is paradigmatic whenever authors are 
concerned to differentiate masters from non-masters, 
at least until second thoughts begin to trouble the 
researcher's mind. Van der Linden and Mellenbergh 
(1977):

"An obvious disadvantage of the (threshold loss 
function) is that the loss is constant. For instance, a 
notaccepted examinee with a latent score just above 
the cutting score gives the same loss as a 
notaccepted examinee with a latent score far above 
the cutting score. This constant loss can be 
eliminated by using a linear loss function."

 
The term 'loss' as used here, as well as in Van der 

Linden (1980), designates negative utility, i.e. the 
negative of what usually is called (terminal) utility. 
The latent score mentioned in the quotation above 
refers to the domain score.

The argument of the quotation above rests on the 
assumption of the pre-established true cutoff score 
(called the cutting point). Now establishing a true 
cutoff score is equivalent to assigning a threshold 
utility function on the domain score scale. How is the 
assignment of a linear utility function to be squared 
with a pre-established true cutoff score? It simply 
can't be done, either you assign a threshold utility 
function, or you assign a linear utility function. Only 
the threshold utility function is consistent with the 



concept of a true cutoff score. The true cutoff score 
has no special meaning in the case where a linear 
utility function is assigned, it is a score just like any 
other domain score. Any special meaning of the true 
cutoff score ought to be reflected in the shape of the 
utility function, but the linear function treats all 
domain scores equally. This particular conceptual 
issue, one of the main themes of my paper, can be 
illustrated by analyzing the mathematical form of the 
linear utility function as presented by Van der Linden 
and Mellenbergh.

The linear utility function presented by Van der Linden 
and Mellenbergh is a straightforward mathematical 
translation of the quotation above: u=a + b(𝜋-d), 
where d is the true cutoff score. (Van der Linden and 
Mellenbergh present this equation as the terminal 
utility function related to the decision to pass the 
examinee. However, the latter function is equal to the 
utility function on the domain score scale, as will be 
demonstrated in the next paragraph). Wilbrink 
(1980a) remarked that this linear function can be 
written as u=a' + b𝜋, where the new constant a' = a - 
bd. Thus the true cutoff score d is seen to have no 
special (mathematical) meaning in this linear utility 
function. Nevertheless, the presentation of Van der 
Linden and Mellenbergh marks the origin of the 
current opinion that decision models assume pre-
established cutoff scores.

Utility proper, terminal utility, and decision 



alternatives

The cutoff score problem is to decide which observable 
score out of a limited number of possible scores is to 
be designated the cutoff score. However, the solution 
to this problem is to be derived from the solution of 
the more tractable problem of finding the best 
decision concerning a randomly chosen examinee. 
The decision alternatives in the latter problem are 
usually called the decision to retain or pass the 
student. This is a highly suggestive and misleading 
way of speaking, however. I will replace these terms 
by the more neutral 'below' and 'above' respectively. 
Below or above what? Not below or above the true 
cutoff score, as seemed to be implicit in the terms 
'pass' or 'fail'. Below or above refers to the yet to be 
found cutoff score on the test. The decision below is 
the decision that this randomly chosen student, given 
his observed test score, has an observed score that 
is below the yet to be found cutoff score on the test. 
The decision above is the decision that the observed 
score of this randomly chosen student is at least 
equal to the yet to be found cutoff score.

Authors presenting the decision-theoretic approach to 
the cutoff score problem typically make use of two 
utility functions, corresponding to each of the 
decision alternatives 'below' or 'above'. These 
functions indicate the utility that is cashed in on or 
entailed by the particular decision taken. For 
example, when the decision is 'above', implying that 
the examinee concerned will not receive remedial 



instruction, the utility entailed by this decision equals 
the utility corresponding to the domain score of this 
examinee. In this particular case the terminal utility 
function corresponding to the 'above' decision is 
equal to the utility function on the domain score 
scale. In other words: terminal utility here is equal to 
utility proper. The reason for distinguishing between 
terminal utility and utility proper is, of course, that 
they may be different, as indeed they are for the 
decision alternative 'below'.

==========================================
=============

[Nederlandse vertaling van (een deel van) Passing 
scores]

Lineaire utiliteit

Een lineaire utiliteitsfunktie over domeinscores drukt uit 
dat de Waardering proportioneel is aan het 
percentage geweten vragen in dat domein. De 
algemene vorm van de lineaire utiliteitsfunktie is a𝜋 
+ b. Bij de keuze van de schaal voor utiliteiten 
kunnen we gebruik maken van het feit dat de 
optimale beslissing niet afhangt van een lineaire 
transformatie van deze schaal. Kiest men een 
lineaire utiliteitsfunktie, dan kan deze als zo 
eenvoudig mogelijk worden gekozen:



u = 𝜋.
[1]

Men wint niets aan algemeenheid door a𝜋 + b te 
gebruiken, integendeel: het verdere wiskundige 
apparaat wordt er alleen maar complexer door.

De traditionele formule om voor raadkansen te 
corrigeren is een lineaire transformatie van scores, 
zodat funkt ie (1) ook is te gebruiken bi j 
domeinscores die voor raden zijn gecorrigeerd.

Uitkomstutiliteit. Voor een doorgelaten student 
worden geen verdere kosten gemaakt. De 
uitkomstutiliteit voor deze beslissing is gelijk aan de 
utiliteit die is toegekend aan de domeinscore voor 
deze student. De funktie voor uitkomst-utiliteiten bij 
de beslissing 'doorlaten' is

ut (p,𝜋) = 𝜋,
[2]

waar het subscript t aangeeft dat het om uitkomst-
utiliteit gaat, p staat voor de beslissing 'doorlaten', en 
𝜋 de domeinscore is.

Voor de beslissing 'bijspijkeren' blijft hetzelfde criterium 
gelden: de bereikte domeinscore (stofbeheersing), 
maar in dit geval na bijspijkeren. De utiliteitsfunktie 
over domeinscores verandert daar niet door, funktie 
(1) blijft van toepassing. Wat wel verandert: er zijn 
k o s t e n v o o r h e t v e r z o r g e n v a n h e t 



bijspijkeronderwijs, extra toetsafname, terwijl ook de 
student extra tijd heeft te besteden. Zolang het 
tegendeel niet aantoonbaar is, is het verstandig aan 
te nemen dat de totale kosten niet afhangen van de 
domeinscore van de individuele student. Omdat 
extreme domeinscores weinig of geen invloed 
hebben op de bepaling van de grensskore, is het 
reeds voldoende wanneer de kosten constant 
verondersteld mogen worden in het gebied rond de 
grensskore. De funktie voor uitkomst-utiliteiten bij de 
beslissing 'bijspijkeren' is dan:

ut (r,𝜏) = t + c,
[3]

[nb: + c, omdat c negatief is]

waar r staat voor de beslissing 'bijspijkeren', en 𝜏 de 
domeinscore na bijspijkeren is. De kosten c worden 
geëvalueerd op de inmiddels vastgelegde 
utiliteitsschaal. Om te beginnen zou men als ruwe 
indicatie kunnen nemen de omvang van de kosten 
van bijspijkeronderwijs in vergelijking tot de kosten 
van het reguliere onderwijs. Zou dat bijv. uitkomen 
op 1/4, dan krijgt c in relatie tot de al gekozen 
utiliteitsschaal van 0 tot 1 de waarde -1/4 (negatief, 
omdat het om kosten gaat). Zie figuur (1).



FIGUUR 1. Functies voor uitkomstutiliteiten,ut(p, 𝜋) = 𝜋 
voor 'doorlatenut(r, 𝜏) = 𝜏 + c voor 'bijspijkeren'; c 
=.-0,25 zijn de verwachte kosten voor bijspijkeren, 
gegeven X=x.

[in figuur 'terinal utility'= 'uitkomstutiliteit' en 'doain 
score' = 'domeinscore' ]

Opmerkelijk is dat de functies van uitkomst-utiliteiten 
elkaar niet snijden. Veel auteurs veronderstellen dat 
deze functies elkaar wel moeten snijden, wil er een 
optimale grensskore gevonden kunnen worden, en 



construeren de functies dan ook volgens die 
aanname. De fout in de laatste gedachtegang is dat 
het effect van bijspijkeren impliciet opgenomen is in 
de functie voor uitkomst-utiliteiten. In de hier 
gepresenteerde analyse blijft het effect dat 
bijspijkeren heeft op de domeinscore (de winst in 
stofbeheersing) strikt gescheiden van de utiliteit van 
de domeinscore-na-bijspijkeren. Op dezelfde wijze 
als de conditionele verdeling voor domeinscores is te 
bepalen, is ook de conditionele verdeling voor 
domeinscores-na-b i j sp i j keren te bepa len , 
conditioneel op dezelfde toetsscore X=x. Zie figuur 
(2).

F I G U U R 2 . D e c o n d i t i o n e l e 
waarschijnlijkheidsverdelingen over domeinscores, 
resp. voor bijspijkeren: f(𝜋∣x) en na bijspijkeren 



g(𝜏∣x).

Verwachte uitkomstutiliteit.  Zij f(𝜋∣x) de 
conditionele waarschijnlijkheidsverdeling voor de 
domeinscore, gegeven de waargenomen score X=x. 
De verwachte uitkomstutiliteit voor een beslissing 
gegeven X=x is te verkrijgen door voor iedere 
domeinscore het product te nemen van zijn 
waarschijnlijkheid en zijn uitkomstutiliteit, en deze te 
sommeren over domeinscores. Voor de beslissing 
'doorlaten' is de verwachte uitkomstutiliteit:

E𝜋|x ut(p,𝜋) =0   ∫1 𝜋 f(𝜋∣x) d𝜋 = µ, [4]

waar het subscript 𝜋|x aangeeft dat de verwachting 
genomen wordt met

betrekking tot f (𝜋|x), en waar p de conditionele 
verwachte domeinscore is.

Onder de veronderstelling dat de regressie van 
domeinscores op waargenomen

scores lineair is, kan µ geschat worden door:

µ  =  𝜌xx' . x /n + (1 - 𝜌xx') .  x/̅n ,
[5]

waar 𝜌 een geschikte betrouwbaarheidscoefficiënt is, 
en x ̅de gemiddelde waargenomen score.

Zij g(t|x) de conditionele waarschijnlijkheidsverdeling 
voor de domeinscore-na-bijspijkeren, gegeven de 
waargenomen score X=x. Deze domeinscorena-



bijspijkeren wordt voorspeld door x. De verwachte 
uitkomstutiliteit voor de beslissing 'bijspijkeren' is:

E𝜏|x ut (r,𝜏) = 0  ∫1(c + 𝜏) g(𝜏∣x) d𝜏 = 𝜈 + c,
[6]

waar 𝜈 staat voor de verwachte domeinscore-na-
bijspijkeren, gegeven X=x. Om een schatting voor 𝜈 
te krijgen is een valideringsonderzoek nodig. 
Wanneer een ongeselecteerde groep studenten de 
behandeling 'bijspijkeren' krijgt, kan E(y∣x) gebruikt 
worden a ls schat t ing voor 𝜈 , waar Y de 
waargenomen score is op de toets die na 
bijspijkeren wordt afgenomen. Immers, wanneer 
aangenomen mag worden dat E (𝜀∣x) = 0, waar 𝜀 de 
meetfout is, dan is
E𝜏|x = E(y-𝜀)|x = Ey|x . Onder de veronderstelling dat 
de regressie van Y op X lineair is, is het resultaat: 

𝜈 = Ey|x = ȳ/n + (x - x)̅ . rxy sy /sx . n,
[7]

waar r de waargenomen correlatie tussen X en Y is, en 
sx en sy de standaardafwijkingen zijn.

Beslisregel. De beslisregel is: kies het alternatief met 
de hoogste verwachte uitkomstutiliteit. Vergelijk de 
vergelijkingen (4) en (6), en laat de student met 
score X=x door wanneer:



c ≥  𝜈 - 𝜇,
[8]  

i.e. wanneer de kosten van bijspijkeren groter zijn dan 
de verwachte vooruitgang in stofbeheersing. Uit 
deze beslisregel volgt de optimale grensscore.

Optimale grensscore. De optimale grensskore is te 
vinden door voor iedere toetsscore de beslisregel toe 
te passen. De optimale grensscore is ook analytisch 
te vinden. Uit de beslisregel volgt dat de optimale 
grensscore die toetsscore is waarbij de verwachte 
uitkomstutiliteit van beide beslissingsalternatieven 
gelijk is, i.e. waar het de beslisser onverschillig is of 
studenten doorgaan, danwel worden bijgespijkerd. 
De optimale grensscore q is de oplossing uit:

E𝜋|q ut (p, 𝜋 ) = E𝜏|q ut (r,𝜏), [9]

afgezien van het discrete karakter van X. De 
berekening van verwachte uitkomstutiliteiten voor 
enkele geschikt gekozen waarden van X geeft het 
omslagpunt; de optimale grensscore q is de ruwe 
score die gelijk is aan dit punt, of daar juist boven 
ligt.

Beta-binomiaal model

Bij lineaire utiliteit is-het niet noodzakelijk de 



waarschijnlijkheids-verdelingen f(𝜋|x) en g(𝜏|x) nader 
te specificeren, omdat beslissingen slechts van de 
verwachte waarden en de aanname van lineaire 
regressie afhangen. Kies andere utiliteitsfuncties, 
dan zal tevens een model voor de relatie tussen 
domeinscores en ruwe scores gekozen moeten 
worden. Een bruikbaar en sterk model is het beta-
binomiaal model: gegeven de domeinscore zijn 
toetsscores binomiaal verdeeld, terwi j l de 
waarschijnlijkheidsverdeling over domeinscores een 
betaverdeling is. Onder deze aannamen is de 
waarschijnlijkheidsverdeling voor toetsscores de 
beta-binomiale verdeling. ,De parameters a en b 
worden geschat met door:

     s2 - x ̅(n - x)̅
b  =   –––––––––––––––  ,
[10]

    x ̅- ns2 / (n - x)̅

a  =  bx ̅/ (n - x)̅
[11]

waar n het aantal toetsvragen is, x ̅het gemiddelde, en 
s de standaardafwijking van de waargenomen 
scores is. De functie zelf is voor de berekeningen 
niet nodig, maar kan wel worden geplot om te zien of 
de verdeling past. De functie is term voor term te 
berekenen uit:

h(x) = 𝛽b(a,b,n) = (n! / [x!(n-x)!] ) B-1(a,b) B(a+x,b+n-
x), [12]



                                  
waar B(a,b) = (a-1)! (b-1)! / (a+b-1)!.

Onder de aanname van lineaire regressie van 
domeinscores op waargenomen scores, is de 
waarschijnlijkheidsverdeling voor domeinscores de 
betafunctie:

f(𝜋) = 𝛽(a,b) = B-1(a,b) 𝜋a-1 (1-𝜋)b-1.
[13]

De waarschijnlijkheidsverdeling voor waargenomen 
s c o r e s g e g e v e n d e d o m e i n s c o r e i s d e 
binomiaalverdeling:

                
h(x∣𝜋)  = ( n! / [ x!(n-x)! ] ) 𝜋x (1-𝜋)n-x.
[14]

Het gaat echter om de verdeling f(𝜋∣x). Gebruik 
makend van een bekende relatie, kan aangetoond 
worden dat:

f(𝜋∣x)  =  f(𝜋) h(x∣𝜋) / h(x)   =

 B - 1 ( a + x , b + n - x ) 𝜋 a + x - 1 ( 1 - 𝜋 ) b + n - x - 1 
[15]

Vergelijking (15) is gelijk aan de betaverdeling 𝛽(a+x, 
b+n-x).



Gemiddelde en variantie van 𝛽(a,b) zijn

a/(a+b) en ab / ((a+b)2 (a+b+1)).
[16]

Bij berekeningen is het r-de moment rond nul van de 
betaverdeling nodig:

𝜇r' = B-1(a, b) B(a+r, b). [17]

Voor de beta-binomiaal verdeling 𝛽b(a,b,n) zijn 
gemiddelde en variantie:

na / (a+b) en 
nab(a+b+n) / [(a+b)2 (a+b+1)].
[18]

Bij het evalueren van verwachte uitkomstutiliteiten kan 
gebruik worden gemaakt van de volgende 
eigenschap:

     ∫ 𝜋 𝛽(a, b)  d𝜋  =  [a / (a+b)]      ∫ 𝛽(a+1, b)  d𝜋.
[19]

Voorspellen van domeinscores T

Een va l ide r ingsonderzoek lever t voor een 
ongeselecteerde groep studenten zowel de 
toetsscores X op, als de scores Y op een toets die 
na bijspijkeren wordt afgenomen. Voor beide 



datasets kan het beta-binomiaal model gebruikt 
worden om de verdeling van domeinscores te 
vinden. Wat nu nog ontbreekt is een methode om 
domeinscores T (na bijspijkeren) te voorspellen op 
grond van X. Gezien de uiteenlopende aard van 
toepassingssituaties zal hiervoor niet een bepaald 
model worden ontwikkeld, maar een verdelingsvrije 
methode, althans wat de relatie tussen scores X en 
Y betreft.

Gevraagd is de voorspellende verdeling g(T∣x) te 
bepalen. Daartoe is g(Y|x) de eerste stap. De tabel 
van scores X tegen Y is beschikbaar, daaruit kan 
voor iedere X=x berekend worden: E(Y∣x) en V(Y∣x), 
resp. het gemiddelde en de variantie van Y gegeven 
x. De totale variantie van Y kan als volgt uitgesplitst 
worden (Novick & Jackson, 1974, vergelijking 4-1.9):

V(Y) = V(E(Y∣x) + E(V(Y∣x). 
[20]

De tweede component van (20), de variantie binnen 
groepen, is het deel van de variantie in Y dat niet 
voorspelbaar is door X.

Aangenomen is dat de varianties V(Y∣x) aan elkaar 
gelijk zijn, i.e. gelijk E(V(Y∣x) zijn (homoscedastisch 
zijn). Het is niet nodig aan te nemen dat de regressie 
van Y op X l ineai r is ; eventueel is een 
vereffeningstechniek te gebruiken om grillige 
waarden voor E(Y∣x) te voorkomen (zie bijv. Novick 



& Jackson 1974, par. 10.9). 

Wanneer het beta-binomiaal model past op de scores 
Y, past het waarschijnlijk ook op de conditionele 
ruwe score verdelingen, zij het dat het kleinere 
aantal waarnemingen mogelijk tot complicaties leidt. 
De verdere berekeningen zijn uit te voeren zoals in 
de paragraaf over het beta-binomiaal model 
beschreven. Op iedere g(Y∣x) met gemiddelde 
E(Y∣x) en variantie E(V(Y∣x) worden de parameters 
van de beta-binomiaal-fit geschat; daardoor is tevens 
de betaverdeling g(T∣x), die dezelfde parameters a 
en b heeft, bepaald.

attenuatie. De scores op de toets-na-bijspijkeren 
worden slechts verzameld om domeinscores T te 
kunnen schatten. Wanneer domeinscores T 
voorspeld worden met behulp van gegevens over 
toetsscores Y, wordt de voorspelling verzwakt door 
onbetrouwbaarheid in de toets-na-bijspijkeren. Zou 
met lineaire utiliteit gewerkt,worden, dan zou de 
correlatie tussen X en T op bekende wijze te 
corrigeren zijn voor attenuatie in de scores Y. Iets 
dergelijks is denkbaar voor de methode in deze 
paragraaf besproken: het gaat er dan om de tussen 
groepen variantie zoveel te vergroten ten koste van 
de binnen groepen variantie (zie vergelijking 20) dat 
voor onbetrouwbaarheid van de gebruikte toets-na-
bijspijkeren wordt gecorrigeerd. Er is bovendien een 
geschikte maat voor betrouwbaarheid beschikbaar, 
wanneer met het beta-binomiaal model wordt 



gewerkt. De betrouwbaarheid, of correlatie tussen 
willekeurig getrokken parallel toetsen, ofwel de 
Kuder Richardson formule 21, is in het betabinomiale 
model:

𝜌yy' = n / (n+c+d)
[21] 

waar c en d de parameters zijn van de beta-binomiaal 
functie die op de waargenomen scores Y is gefit. Zie 
Lord en Novick 1968 vergelijking 23.6.14, welke 
vergelijking na gebruik van vergelijking (18) en na 
correctie van de nogal afwijkende notatie van Lord 
en Novick, gelijk is aan vergelijking (21).

Wanneer is te voorzien dat de optimale grensscore 
dicht bij x ̅ komt te liggen, dan is de attenuatie in 
scores Y van weinig of geen belang, en kan een 
correctie achterwege blijven. Bij meer extreme 
optimale grensscores gaat de attenuatie in scores Y 
echter een steeds grotere vertekening in 
uitkomstutiliteiten opleveren, en is correctie gewenst. 
Men kan ook kiezen voor een aantal toetsvragen dat 
in vergelijking tot dat in de 'voorspellende' toets veel 
groter is, althans bij de uitvoering van het 
valideringsonderzoek.

Omdat voorsepllingen berusten op toetsscores X, 
mogen deze niet voor attenuatie gecorrigeerd 
worden.

Drempel utiliteit



Een drempel-utiliteitsfunctie over domeinscores heeft 
de volgende vorm:

       0         voor     𝜋  of  𝜏 <  𝛾

u  =  { 
[28]
       1          voor     𝜋  of  𝜏 ≥  𝛾

waar 𝛾 de drempel op de schaal voor domeinscores is. 
Er kunnen verschillende redenen zijn om voor 
drempel-utiliteit te kiezen. Men kan menen dat er 
een duidelijke grens is aan te wijzen waarboven er 
sprake is van 'beheersing' van de stof, en 
waarbeneden er niet van 'beheersing' gesproken kan 
worden. Of men hanteert drempelverlies als 
benadering voor voor andere functies die rond de 
'drempel' sterk stijgen.
De uitkomstutiliteit voor de beslissing 'doorlaten' is 
gelijk aan verge-

lijking (28) omdat er geen andere utiliteiten of kosten 
zijn:

                  0          voor     𝜋  <  𝛾

ut( p, 𝜋 )  =  { 
[29]
                  1          voor     𝜋  ≥  𝛾

De uitkomstutiliteit voor de beslissing 'bijspijkeren' is:

                 -c          voor       𝜏  <  𝛾



ut( r, 𝜏 )  =  { 
[30]
                 1-c        voor       𝜏  ≥  𝛾 .

waar c staat voor de kosten van bijspijkeren.

De verwachte uitkomstutiliteiten zijn

E𝜋|x ut (p,𝜋)  =  𝛾   ∫1  f (𝜋∣x)  d𝜋  =  Px
[31]

E𝜏|x ut (r,𝜏)  =   0   ∫𝛾 -c g(t∣x) d𝜏 + 𝛾   ∫1 (1-c) g(t∣x) d𝜏

= -c (1-Qx) + (1-c) Qx  =  Qx - c,
[32]

waar Px en Qx de respectievelijke integralen 
aanduiden. Bij gebruik van het betabinomiale model 
is g(T∣x) een beta-functie.

De optimale grensscore q is de waargenomen score 
X=x die de vergelijkingen aan elkaar gelijk maakt 
(afgezien van het discrete karakter van X), of waar:

Qx - Px  =  c.
[33]

Merk op dat Px en Qx de waarschijnlijkheid aangeven 



dat de domeinscore boven de drempel ligt, gegeven 
X=x, respectievelijk voor en na bijspijkeren.

De hier beschreven techniek is ook te gebruiken bij 
andere utiliteitsfuncties die samengesteld zijn uit 
delen van verschillende functies. Bijvoorbeeld:

                𝜋 / 𝛾           voor      𝜋  <  𝛾

u  =  { 
[34]
                 1          voor       𝜋  ≥  𝛾 .

PM Voor literatuurlijst zie 'Passing scores'


